[NeetCode 150] House Robber

House Robber

You are given an integer array nums where nums[i] represents the amount of money the ith house has. The houses are arranged in a straight line, i.e. the ith house is the neighbor of the (i-1)th and (i+1)th house.

You are planning to rob money from the houses, but you cannot rob two adjacent houses because the security system will automatically alert the police if two adjacent houses were both broken into.

Return the maximum amount of money you can rob without alerting the police.

Example 1:

Input: nums = [1,1,3,3]

Output: 4

Explanation: nums[0] + nums[2] = 1 + 3 = 4.

Example 2:

Input: nums = [2,9,8,3,6]

Output: 16

Explanation: nums[0] + nums[2] + nums[4] = 2 + 8 + 6 = 16.

Constraints:

1 <= nums.length <= 100
0 <= nums[i] <= 100

Solution

A quite trivial thought is using O(n2)O(n^2)O(n2) dp. Let dp[i]dp[i]dp[i] represents the maximum money we can rob from house 0∼n0\sim n0n and house nnn is robbed. Then we can get the transfer function:
dp[i]=nums[i]+max⁡j∈[0,i−2]dp[j] dp[i] = nums[i] + \max_{j\in [0, i-2]} dp[j] dp[i]=nums[i]+j[0,i2]maxdp[j]
If we realize the process of get maximum by brute force, the time complexity is O(n2)O(n^2)O(n2). Some data structure can accelerate this process to O(nlog⁡n)O(n\log n)O(nlogn). However, we can directly maintain the value of max⁡j∈[0,i−2]dp[j]\max_{j\in [0, i-2]} dp[j]maxj[0,i2]dp[j] in linear time complexity because we use this in an ascending order.

Code

Let max1 represents max⁡j∈[0,i−1]dp[j]\max_{j\in [0, i-1]} dp[j]maxj[0,i1]dp[j] and max2 represents max⁡j∈[0,i−2]dp[j]\max_{j\in [0, i-2]} dp[j]maxj[0,i2]dp[j]

class Solution:
    def rob(self, nums: List[int]) -> int:
        max1, max2 = 0, 0
        for i in range(len(nums)):
            nums[i] = max(max2 + nums[i], max1)
            max2 = max1
            max1 = nums[i]
        return nums[-1]
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadyPi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值