Pseudo-polynomial Partition Problem

本文探讨了给定整数集合的伪多项式时间复杂度分区问题,通过动态规划算法实现,验证了算法的时间复杂度为O(ns)。实验部分采用Python编程验证理论结果,并通过图表对比实际运行时间和理论预期时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1       Problem Statement

Pseudo-polynomialPartition
Given a set consisting of n integers [a1, a2, …an], you want to partition into two parts so that thesum of the two parts is equal.  Suppose s =  a1 + a2 …+ an. The time complexity of your algorithm shouldbe O(ns) orbetter.  [Note: Due to the presence of the term s in the timecomplexity, such an algorithm is called pseudo polynomial algorithm.]

2       Theoretical Analysis

In this problem, I use part[i][j] to be true if asubset of {x1, x2,..,xj} sums to i and false otherwise. Thus, part[i][j] istrue if either p(i, j-1) is true or if part(i–xj, j-1) is true.

part(i, j) is false otherwise. And suppose s is thesum of the array.

Thus, the total time complexity is O(ns)

3       Experimental Analysis

3.1       Program Listing

 

I use python to write the program, if the O(ns) istoo small, the running time does not change obviously.

Thus, I choose “S”: 500, 1000, 1500, 2000, 2500

And, keep “N”: 6

 

3.2       Data Normalization Notes

 

I normalize the values by a constant of 679.91 It comes from theradio of average experimental result and average theoretical result.

 

 

 

 

 

3.3       Output Numerical Data

s

n

Experimental Result, in ns

Theoretical Result

Scaling Constant

Adjusted Theoretical Result

500

6

1699924.46

3000

 

2039723.46

1000

6

4694938.65

6000

 

4079446.91

1500

6

6446910.85

9000

 

6119170.37

2000

6

8310079.57

12000

 

8158893.83

2500

6

9443998.33

15000

 

10198617.3

 

 

6119170.37

9000

679.91

 

 

3.4       Graph

 

 

3.5       Graph Observations

 

From the graph, we can see the blue line, derivesfrom experiment, fits the red line which comes from theory.

 

 

4       Conclusions

 

From the experiment, we can come to a conclusionthat the time complexity of this code problem is O(ns).



# -*- coding: UTF-8 -*-
# __author__ = 'Sengo'
import time


def open_clock(func):
    def _wrapper(*args, **kwargs):
        begin = time.time()
        ret = func(*args, **kwargs)
        end = time.time()
        total = end - begin
        print "cost time: ", total
        return ret
    return _wrapper


@open_clock
def find_partition(arr):
    """
    :param arr: A list of integers arr
    :return: True if arr can be partitioned, and sum of two part is equal
    """
    _sum = sum(arr)
    n = len(arr)

    # Odd sum
    if _sum % 2:
        return False

    # init part[_sum/2+1][n+1]
    part = [[0] * (n+1) for _ in range(_sum/2+1)]

    # init top row as True
    for i in range(n+1):
        part[0][i] = True

    # init the leftmost column as False, expect part[0][0]
    for i in range(1, _sum/2 + 1):
        part[i][0] = False

    for i in range(1, _sum/2 + 1):
        for j in range(1, n + 1):
            part[i][j] = part[i][j-1]
            if i >= arr[j-1]:
                part[i][j] = part[i][j] or part[i - arr[j-1]][j-1]

    return part[_sum/2][n]


if __name__ == '__main__':
    a = [0, 1000, 0, 0, 0, 1000]
    print find_partition(a)


参考 

http://www.geeksforgeeks.org/dynamic-programming-set-18-partition-problem/

https://en.wikipedia.org/wiki/Partition_problem


资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 华为移动服务(Huawei Mobile Services,简称 HMS)是一个全面开放的移动服务生态系统,为企业和开发者提供了丰富的工具和 API,助力他们构建、运营和推广应用。其中,HMS Scankit 是华为推出的一款扫描服务 SDK,支持快速集成到安卓应用中,能够提供高效且稳定的二维码和条形码扫描功能,适用于商品扫码、支付验证、信息获取等多种场景。 集成 HMS Scankit SDK 主要包括以下步骤:首先,在项目的 build.gradle 文件中添加 HMS Core 库和 Scankit 依赖;其次,在 AndroidManifest.xml 文件中添加相机访问和互联网访问权限;然后,在应用程序的 onCreate 方法中调用 HmsClient 进行初始化;接着,可以选择自定义扫描界面或使用 Scankit 提供的默认扫描界面;最后,实现 ScanCallback 接口以处理扫描成功和失败的回调。 HMS Scankit 内部集成了开源的 Zxing(Zebra Crossing)库,这是一个功能强大的条码和二维码处理库,提供了解码、生成、解析等多种功能,既可以单独使用,也可以与其他扫描框架结合使用。在 HMS Scankit 中,Zxing 经过优化,以更好地适应华为设备,从而提升扫描性能。 通常,ScanKitDemoGuide 包含了集成 HMS Scankit 的示例代码,涵盖扫描界面的布局、扫描操作的启动和停止以及扫描结果的处理等内容。开发者可以参考这些代码,快速掌握在自己的应用中实现扫码功能的方法。例如,启动扫描的方法如下: 处理扫描结果的回调如下: HMS Scankit 支持所有安卓手机,但在华为设备上能够提供最佳性能和体验,因为它针对华为硬件进行了
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值