3472. Longest Palindromic Subsequence After at Most K Operations
class Solution:
def longestPalindromicSubsequence(self, s: str, k: int) -> int:
def cost(a, b):
return min(abs(ord(a) - ord(b)), 26 - abs(ord(a) - ord(b)))
n = len(s)
# 题目找的是subsequence不是substring
# dp[i][j][c] stores the length of the longest palindromic subsequence for the substring s[i..j] using at most c operations.
dp = [[[0] *(k+1) for _ in range(n)] for _ in range(n)]
# base case, only single char
for i in range(n):
for j in range(k+1):
dp[i][i][j] = 1
# start with size 2
for sz in range(2, n+1):
# i is from 0 to n-size, included
for i in range(n-sz+1):
j = i + sz - 1
for c in range(k+1):
if s[i] == s[j]:
dp[i][j][c] = 2 + dp[i+1][j-1][c]
else:
option1 = dp[i+1][j][c]
option2 = dp[i][j-1][c]
option3 = 0
if c >= cost(s[i], s[j]):
option3 = 2 + dp[i+1][j-1][c-cost(s[i], s[j])]
dp[i][j][c] = max(option1, option2, option3)
return dp[0][n-1][k]
516. Longest Palindromic Subsequence
One possible longest palindromic subsequence is "bb".
class Solution(object):
def longestPalindromeSubseq(self, s):
"""
:type s: str
:rtype: int
"""
length = len(s)
dp = [[0]*length for i in s]
for left in xrange(length-1, -1, -1):
dp[left][left] = 1
for right in xrange(left+1, length):
if s[left] == s[right]:
dp[left][right] = dp[left+1][right-1] + 2
else:
dp[left][right] = max(dp[left+1][right], dp[left][right-1])
return dp[0][length-1]
9. Palindrome Number
class Solution(object):
def isPalindrome(self, x):
if x < 0:
return False
ranger = 1
while x / ranger >= 10:
ranger *= 10
while x:
left = x / ranger
right = x % 10
if left != right:
return False
x = (x % ranger) / 10
ranger /= 100
return True
647. Palindromic Substrings 求回文,感觉有点难不知道为什么放在DP,不是用DP解
Given a string, your task is to count how many palindromic substrings in this string.
The substrings with different start indexes or end indexes are counted as different substrings even they consist of same characters.
Example 1:
Input: "abc"
Output: 3
Explanation: Three palindromic strings: "a", "b", "c".
Example 2:
Input: "aaa"
Output: 6
Explanation: Six palindromic strings: "a", "a", "a", "aa", "aa", "aaa".
class Solution(object):
def countSubstrings(self, s):
"""
:type s: str
:rtype: int
"""
n = len(s)
res = 0
for i in xrange(len(s)):
# add itself
res += 1
# even
left = i
right = i + 1
while left >= 0 and right <= n-1 and s[left] == s[right]:
res += 1
left -= 1
right += 1
# odd
left = i-1
right = i+1
while left >= 0 and right <= n-1 and s[left] == s[right]:
res += 1
left -= 1
right += 1
return res
5. Longest Palindromic Substring
Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.
Example 1:
Input: "babad"
Output: "bab"
Note: "aba" is also a valid answer.
Example 2:
Input: "cbbd"
Output: "bb"
class Solution(object):
def longestPalindrome(self, s):
self.n = len(s)
self.long = self.left = 0
for i in xrange(self.n):
# even
self.helper(i, i+1, s)
self.helper(i-1, i+1, s)
return s[self.left: self.left+self.long]
def helper(self, l, r, s):
while 0 <= l and r < self.n and s[l] == s[r]:
l -= 1
r += 1
l += 1
r -= 1
if r - l + 1 > self.long:
self.long = r - l + 1
self.left = l
131. Palindrome Partitioning
class Solution(object):
def partition(self, s):
"""
:type s: str
:rtype: List[List[str]]
"""
res = []
self.helper(s, [], res)
return res
def helper(self, s, cur, res):
if not s:
res.append(cur)
return
for i in xrange(1, len(s) + 1): # 这里要加1
if self.isPal(s[:i]):
self.helper(s[i:], cur + [s[:i]], res)
def isPal(self, s):
return s == s[::-1]
680. Valid Palindrome II
class Solution(object):
def validPalindrome(self, s):
"""
:type s: str
:rtype: bool
"""
left, right = 0, len(s)-1
while left < right:
if s[left] != s[right]:
del_left = s[left+1:right+1]
del_right = s[left:right]
return del_left == del_left[::-1] or del_right == del_right[::-1]
else:
left += 1
right -= 1
return True
336. Palindrome Pairs
思路:
bot: 前缀 b 是回文, 检查对应后缀ot 的颠倒 to, 如果有to to+bot就是回文。 反过来,如果后缀t是回文, 对应前缀bo 颠倒 ob如果存在 bot+ob 就是回文。
class Solution(object):
def palindromePairs(self, words):
"""
:type words: List[str]
:rtype: List[List[int]]
"""
def check(word):
return word == word[::-1]
word_idx = {word:i for i, word in enumerate(words)}
re = []
for word, i in word_idx.items():
for j in xrange(len(word)+1):
prefix = word[:j]
suffix = word[j:]
if check(prefix):
back = suffix[::-1]
if back != word and back in word_idx:
re.append([word_idx[back], i])
# if a palindrome can be created by appending an entire other word to the current word, then we will already consider # such a palindrome when considering the empty string as prefix for the other word.
if j != len(word) and check(suffix):
back = prefix[::-1]
if back != word and back in word_idx:
re.append([i, word_idx[back]])
return re