从AAAI2025中挑选出对目标检测有帮助的文献——第二期

🎯 一、适合用于 Backbone 改进/特征提取增强

1️⃣ Rethinking U-Net: Task-Adaptive Mixture of Skip Connections for Enhanced Medical Image Segmentation

📄 Zichen Luo et al., pp. 5874–5882
关键词:医学图像、特征聚合、可变跳连结构

  • 🔍 亮点:提出 Task-Adaptive Skip Connection,能根据任务动态调整浅层与深层特征的融合比例。
  • 💡 启发:可在 YOLOv12 backbone 或 PAN 部分借鉴,引入可学习权重的跳连,让不同层特征自动加权融合,提高乳腺组织边界与肿块区域的区分度。
  • 📘 方向定位:医学图像 → 特征融合 → 高可迁移性。

2️⃣ DreamUHD: Frequency Enhanced Variational Autoencoder for Ultra-High-Definition Image Restoration

📄 Yidi Liu et al., pp. 5712–5720

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值