AAAI(Association for the Advancement of Artificial Intelligence,人工智能促进协会年会)是人工智能领域的顶级会议之一,将于2025 年 2 月 25 日至 3 月 4 日 在宾夕法尼亚州费城举办。

12月9日已经公布最终收录文献,在此博主汇总了其中与mamba有关的文献,供大家学习。
SparX: A Sparse Cross-Layer Connection Mechanism for Hierarchical Vision Mamba and Transformer Networks
SparX:分层视觉 Mamba 和 Transformer 网络的稀疏跨层连接机制
Abstract: Due to the capability of dynamic state space models (SSMs) in capturing long-range dependencies with linear-time computational complexity, Mamba has shown notable performance in NLP tasks. This has inspired the rapid development of Mamba-based vision models, resulting in promising results in visual recognition tasks. However, such models are not capable of distilling features across layers through feature aggregation, interaction, and selection. Moreover, existing cross-layer feature aggregation methods designed for CNNs or ViTs are not practical in Mamba-based models due to high computational costs. Therefore, this paper aims to introduce an efficient cross-layer feature aggregation mechanism for vision backbone networks. Inspired by the Retinal Ganglion Cells (RGCs) in the human visual system, we propose a new sparse cross-layer connection mechanism termed SparX to effectively improve cross-layer feature interaction and reuse. Specifically, we build two different types of network layers: ganglion layers and normal layers. The former has higher connectivity and complexity, enabling multi-layer feature aggregation and interaction in an input-dependent manner. In contrast, the latter has lower connectivity and complexity. By interleaving these two types of layers, we design a new family of vision backbone networks with sparsely cross-connected layers, achieving an excellent trade-off among model size, computational cost, memory cost, and accuracy in comparison to its counterparts. For instance, with fewer parameters, SparX-Mamba-T improves the top-1 accuracy of VMamba-T from 82.5\% to 83.5\%, while SparX-Swin-T achieves a 1.3\% increase in top-1 accuracy compared to Swin-T. Extensive experimental results demonstrate that our new connection mechanism possesses both superior performance and generalization capabilities on various vision tasks.
地址:arXiv:2409.09649
PoseMamba: Monocular 3D Human Pose Estimation with Bidirectional Global-Local Spatio-Temporal State Space Model
PoseMamba:具有双向全局-局部时空状态空间模型的单目 3D 人体姿势估计
Abstract: Transformers have significantly advanced the field of 3D human pose estimation (HPE). However, existing transformer-based methods primarily use self-attention mechanisms for spatio-temporal modeling, leading to a quadratic complexity, unidirectional modeling of spatio-temporal relationships, and insufficient learning of spatial-temporal correlations. Recently, the Mamba architecture, utilizing the state space model (SSM), has exhibited superior long-range modeling capabilities in a variety of vision tasks with linear complexity. In this paper, we propose PoseMamba, a novel purely SSM-based approach with linear complexity for 3D human pose estimation in monocular video. Specifically, we propose a bidirectional global-local spatio-temporal SSM block that comprehensively models human joint relations within individual frames as well as temporal correlations across frames. Within this bidirectional global-local spatio-temporal SSM block, we introduce a reordering strategy to enhance the local modeling capability of the SSM. This strategy provides a more logical geometric scanning order and integrates it with the global SSM, resulting in a combined global-local spatial scan. We have quantitatively and qualitatively evaluated our approach using two benchmark datasets: Human3.6M and MPI-INF-3DHP. Extensive experiments demonstrate that PoseMamba achieves state-of-the-art performance on both datasets while maintaining a smaller model size and reducing computational costs. The code and models will be released.
地址:arXiv:2408.03540
{S3-Mamba}: Small-Size-Sensitive Mamba for Lesion Segmentation
{S 3 -Mamba}:用于病变分割的小尺寸敏感 Mamba
Abstract: Functional Magnetic Resonance Image (fMRI) is commonly employed to study human brain activity, since it offers insight into the relationship between functional fluctuations and human behavior. To enhance analysis and comprehension of brain activity, Graph Neural Networks (GNNs) have been widely applied to the analysis of functional connectivities (FC) derived from fMRI data, due to their ability to capture the synergistic interactions among brain regions. However, in the human brain, performing complex tasks typically involves the activation of certain pathways, which could be represented as paths across graphs. As such, conventional GNNs struggle to learn from these pathways due to the long-range dependencies of multiple pathways. To address these challenges, we introduce a novel framework BrainMAP to learn Multiple Activation Pathways in Brain networks. BrainMAP leverages sequential models to identify long-range correlations among sequentialized brain regions and incorporates an aggregation module based on Mixture of Experts (MoE) to learn from multiple pathways. Our comprehensive experiments highlight BrainMAP's superior performance. Furthermore, our framework enables explanatory analyses of crucial brain regions involved in tasks. Our code is provided at https://github.com/LzyFischer/Graph-Mamba.
地址:arXiv:2412.14546
Light-T2M: A Lightweight and Fast Model for Text-to-motion Generation
Light-T2M:用于文本到动作生成的轻量级快速模型
Abstract: Despite the significant role text-to-motion (T2M) generation plays across various applications, current methods involve a large number of parameters and suffer from slow inference speeds, leading to high usage costs. To address this, we aim to design a lightweight model to reduce usage costs. First, unlike existing works that focus solely on global information modeling, we recognize the importance of local information modeling in the T2M task by reconsidering the intrinsic properties of human motion, leading us to propose a lightweight Local Information Modeling Module. Second, we introduce Mamba to the T2M task, reducing the number of parameters and GPU memory demands, and we have designed a novel Pseudo-bidirectional Scan to replicate the effects of a bidirectional scan without increasing parameter count. Moreover, we propose a novel Adaptive Textual Information Injector that more effectively integrates textual information into the motion during generation. By integrating the aforementioned designs, we propose a lightweight and fast model named Light-T2M. Compared to the state-of-the-art method, MoMask, our Light-T2M model features just 10\% of the parameters (4.48M vs 44.85M) and achieves a 16\% faster inference time (0.152s vs 0.180s), while surpassing MoMask with an FID of \textbf{0.040} (vs. 0.045) on HumanML3D dataset and 0.161 (vs. 0.228) on KIT-ML dataset. The code is available at https://github.com/qinghuannn/light-t2m.
地址:arXiv:2412.11193
DG-Mamba: Robust and Efficient Dynamic Graph Structure Learning with Selective State Space Models
DG-Mamba:具有选择性状态空间模型的鲁棒且高效的动态图结构学习
Abstract: Dynamic graphs exhibit intertwined spatio-temporal evolutionary patterns, widely existing in the real world. Nevertheless, the structure incompleteness, noise, and redundancy result in poor robustness for Dynamic Graph Neural Networks (DGNNs). Dynamic Graph Structure Learning (DGSL) offers a promising way to optimize graph structures. However, aside from encountering unacceptable quadratic complexity, it overly relies on heuristic priors, making it hard to discover underlying predictive patterns. How to efficiently refine the dynamic structures, capture intrinsic dependencies, and learn robust representations, remains under-explored. In this work, we propose the novel DG-Mamba, a robust and efficient Dynamic Graph structure learning framework with the Selective State Space Models (Mamba). To accelerate the spatio-temporal structure learning, we propose a kernelized dynamic message-passing operator that reduces the quadratic time complexity to linear. To capture global intrinsic dynamics, we establish the dynamic graph as a self-contained system with State Space Model. By discretizing the system states with the cross-snapshot graph adjacency, we enable the long-distance dependencies capturing with the selective snapshot scan. To endow learned dynamic structures more expressive with informativeness, we propose the self-supervised Principle of Relevant Information for DGSL to regularize the most relevant yet least redundant information, enhancing global robustness. Extensive experiments demonstrate the superiority of the robustness and efficiency of our DG-Mamba compared with the state-of-the-art baselines against adversarial attacks.
地址:arXiv:2412.08160
Manta: Enhancing Mamba for Few-Shot Action Recognition of Long Sub-Sequence
Manta:增强 Mamba 以实现长子序列的少镜头动作识别
Abstract: In few-shot action recognition (FSAR), long sub-sequences of video naturally express entire actions more effectively. However, the high computational complexity of mainstream Transformer-based methods limits their application. Recent Mamba demonstrates efficiency in modeling long sequences, but directly applying Mamba to FSAR overlooks the importance of local feature modeling and alignment. Moreover, long sub-sequences within the same class accumulate intra-class variance, which adversely impacts FSAR performance. To solve these challenges, we propose a Matryoshka MAmba and CoNtrasTive LeArning framework (Manta). Firstly, the Matryoshka Mamba introduces multiple Inner Modules to enhance local feature representation, rather than directly modeling global features. An Outer Module captures dependencies of timeline between these local features for implicit temporal alignment. Secondly, a hybrid contrastive learning paradigm, combining both supervised and unsupervised methods, is designed to mitigate the negative effects of intra-class variance accumulation. The Matryoshka Mamba and the hybrid contrastive learning paradigm operate in two parallel branches within Manta, enhancing Mamba for FSAR of long sub-sequence. Manta achieves new state-of-the-art performance on prominent benchmarks, including SSv2, Kinetics, UCF101, and HMDB51. Extensive empirical studies prove that Manta significantly improves FSAR of long sub-sequence from multiple perspectives.
地址:arXiv:2412.07481
BrainMAP: Learning Multiple Activation Pathways in Brain Networks
BrainMAP:学习大脑网络中的多种激活途径
Abstract: Functional Magnetic Resonance Image (fMRI) is commonly employed to study human brain activity, since it offers insight into the relationship between functional fluctuations and human behavior. To enhance analysis and comprehension of brain activity, Graph Neural Networks (GNNs) have been widely applied to the analysis of functional connectivities (FC) derived from fMRI data, due to their ability to capture the synergistic interactions among brain regions. However, in the human brain, performing complex tasks typically involves the activation of certain pathways, which could be represented as paths across graphs. As such, conventional GNNs struggle to learn from these pathways due to the long-range dependencies of multiple pathways. To address these challenges, we introduce a novel framework BrainMAP to learn Multiple Activation Pathways in Brain networks. BrainMAP leverages sequential models to identify long-range correlations among sequentialized brain regions and incorporates an aggregation module based on Mixture of Experts (MoE) to learn from multiple pathways. Our comprehensive experiments highlight BrainMAP's superior performance. Furthermore, our framework enables explanatory analyses of crucial brain regions involved in tasks. Our code is provided at https://github.com/LzyFischer/Graph-Mamba.
后续还会继续整理在 NeurIPS 2024 和 ECCV 2024 中有关于Mamba研究的最新进展文献。

被折叠的 条评论
为什么被折叠?



