Dreamoon loves summing up something for no reason. One day he obtains two integers a and b occasionally. He wants to calculate the sum of all nice integers. Positive integer x is called nice if and
, where k is some integer number in range[1, a].
By we denote the quotient of integer division of x and y. By
we denote the remainder of integer division of x andy. You can read more about these operations here: http://goo.gl/AcsXhT.
The answer may be large, so please print its remainder modulo 1 000 000 007 (109 + 7). Can you compute it faster than Dreamoon?
The single line of the input contains two integers a, b (1 ≤ a, b ≤ 107).
Print a single integer representing the answer modulo 1 000 000 007 (109 + 7).
1 1
0
2 2
8
For the first sample, there are no nice integers because is always zero.
For the second sample, the set of nice integers is {3, 5}.
题解:这一题可以将题目中的那个东西化简,最后变成x=(k*b+1)*(x mod b)他要求所有x的和,因为k是1~a,x mod b是1~b-1,所以我们可以直接把这个结果算出来,简单的求和即可。
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
long long a,b;
int main()
{
scanf("%I64d%I64d",&a,&b);
long long c=((b-1)*b/2)%1000000007,d=((b*(a*(a+1)/2%1000000007)+a)%1000000007);
long long ans=(c*d)%1000000007;
printf("%I64d\n",ans%1000000007);
return 0;
}