51 Nod 1014 X^2 Mod P (数论+二次剩余)

本文详细解析了1014 X^2 Mod P算法问题,介绍了如何通过二次剩余算法解决X*X mod P = A的问题,其中P为质数。提供了输入输出示例及代码实现,帮助理解算法原理。

1014 X^2 Mod P 

基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题

 收藏

 关注

X*X mod P = A,其中P为质数。给出P和A,求<=P的所有X。

Input

两个数P A,中间用空格隔开。(1 <= A < P <= 1000000, P为质数)

Output

输出符合条件的X,且0 <= X <= P,如果有多个,按照升序排列,中间用空格隔开。
如果没有符合条件的X,输出:No Solution

Input示例

13 3

Output示例

4 9

1.二次剩余算法:点击转到

2.非二次剩余算法通过代码:

#include<bits/stdc++.h>
using namespace std;
int main()
{
	long long p,a;
	int flag=0;
	cin>>p>>a;
	for(long long x=1;x<=p;x++)
	{
		if((long long)(x*x)%p==a)
		{
			printf(" %d",x);
			flag=1;
		}
	}
	if(!flag)
	  cout<<"No Solution";
	cout<<endl;
	return 0;
}

 

### 关于51Nod 3100 上台阶问题的C++解法 #### 题目解析 该题目通常涉及斐波那契数列的应用。假设每次可以走一步或者两步,那么到达第 \( n \) 层台阶的方法总数等于到达第 \( n-1 \) 层和第 \( n-2 \) 层方法数之和。 此逻辑可以通过动态规划来解决,并且为了防止数值过大,需要对结果取模操作(如 \( \% 100003 \)[^1])。以下是基于上述思路的一个高效实现: ```cpp #include <iostream> using namespace std; const int MOD = 100003; long long f[100010]; int main() { int n; cin >> n; // 初始化前两项 f[0] = 1; // 到达第0层有1种方式(不移动) f[1] = 1; // 到达第1层只有1种方式 // 动态规划计算f[i] for (int i = 2; i <= n; ++i) { f[i] = (f[i - 1] + f[i - 2]) % MOD; } cout << f[n] << endl; return 0; } ``` 以上代码通过数组 `f` 存储每层台阶的结果,利用循环逐步填充至目标层数 \( n \),并最终输出结果。 --- #### 时间复杂度分析 由于仅需一次线性遍历即可完成所有状态转移,时间复杂度为 \( O(n) \)。空间复杂度同样为 \( O(n) \),但如果优化存储,则可进一步降低到 \( O(1) \): ```cpp #include <iostream> using namespace std; const int MOD = 100003; int main() { int n; cin >> n; long long prev2 = 1, prev1 = 1, current; if (n == 0 || n == 1) { cout << 1 << endl; return 0; } for (int i = 2; i <= n; ++i) { current = (prev1 + prev2) % MOD; prev2 = prev1; prev1 = current; } cout << prev1 << endl; return 0; } ``` 在此版本中,只保留最近两个状态变量 (`prev1`, `prev2`) 来更新当前值,从而节省内存开销。 --- #### 输入输出说明 输入部分接受单个整数 \( n \),表示台阶数量;程序会返回从地面走到第 \( n \) 层的不同路径数目,结果经过指定模运算处理以适应大范围数据需求。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值