线性回归分析是统计学中最常用的分析方法之一,但在使用前需要确保数据满足一定的适用条件。以下是线性回归分析的主要适用条件及相应的检验方法,基于SPSSAU(在线SPSS)平台的操作建议。
一、数据要求
- 因变量:必须是定量数据(连续型数据)
- 自变量:可以是定量数据或定类数据
- 当自变量为定类数据时,需要进行哑变量处理
- 例如:专业分为"理科类"、"工科类"和"文科类",需要设置2个哑变量(留1个作为参照项)
二、主要适用条件及检验方法
三、特别说明
- 前验与后验检验:
- 前验:在线性回归开始之前进行的检验(如线性关系检验)
- 后验:在线性回归后利用回归结果进行的检验(如残差检验)
- 残差处理:
- 残差是因变量的观测值与回归模型预测值之间的差值
- 如果残差不满足正态性,可考虑对因变量进行转换(如取对数)
四、模型评价指标
- 模型总体显著性:F检验p值<0.05说明模型显著
- 回归系数显著性:t检验p值<0.05说明该自变量影响显著
- 拟合优度:R²值越接近1说明模型拟合越好(同时参考调整R²)
通过SPSSAU平台进行线性回归分析时,系统会自动完成上述各项检验并生成详细报告,帮助研究者快速判断数据是否满足线性回归的适用条件。