
一、背景
数值模拟已广泛应用于航空发动机的设计和研制领域,数值模拟技术的应用可以有效地提高设计精度,减少实验迭代次数和开发成本,缩短开发周期,提高研究效率和质量。
目前在航空发动机领域,部件级仿真技术经过多年发展已经非常成熟,有效促进了航发部件的设计。然而时至今日,航空发动机整机的仿真依旧面临较大挑战。
首先整个航空发动机包含风扇、压气机、燃烧室、涡轮等多个部件,使得整机仿真对网格和计算规模的要求远超以往;其次,部件复杂几何、高速相对运动以及无处不在的多尺度流动,对网格功能与性能提出苛刻的要求;第三,核心能量转化部件燃烧室内多相、喷雾、燃烧、传热、声学等多物理化学过程强烈耦合,给求解器开发带来极大难度。最后,上述三点导致航发仿真求解器在大规模并行时难以获得令人满意的并行效率,从而无法真正利用超级计算机资源。
二、应用概述
我们开创性地在“神威·太湖之光”超级计算机上基于swOpenFoam完成发动机整机模拟。如图1所示,目标发动机由2个轴、2级风扇、10级压气机、一个短环形燃烧室,和7级涡轮组成。 网格总量在业界首次达到 50亿 , 并行规模达到 65336个MPI进程 , 强扩展性测试中66560核相对8320核 并行效率保持在80%以上 。在“神威·太湖之光”上投入的 总核数为400万核 ,持续运算性能高达 1384 DP-GFLOP/s 。
三、挑战
1.航空发动机仿真并行规模和问题规模难以增长
航空发动机仿真并行规模和问题规模难以增长有多方面的原因。首先是航空发动机/燃气轮机模拟需要更复杂精细的燃烧模型,以及需要利用高性能计算资源进行超大规模并行计算的专门优化。第二个原因是当网格和并行规模非常大时,网格生成和后处理也成了一道

最低0.47元/天 解锁文章
982

被折叠的 条评论
为什么被折叠?



