题意:在二维平面上求解6个子问题:
1.三角形的外接圆;
2.三角形的内切圆;
3.点到圆的切线;
4.过定点且与定直线相切的半径为r的圆;
5.同时与两相交直线相切的半径为r的圆;
6.同时与两相离圆相切的半径为r的圆。
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=24008
——>>做到第4小问的时候,出现了一个精度问题:本来用dcmp(delta) == 0来判断直线与圆相切,可以在此处硬是不正确。。。书中有言:“圆和直线相切的判定很容易受到误差影响,因为这里的直线是计算出来的,而不是题目中输入的。”。。。所以——“特殊判断圆心到输入直线的距离”(“当然也可以通过调整eps的数值来允许一定的误差,但不推荐这样做。调节eps只是掩盖了问题,并没有消除“)。
代码虽长,但1A啦。。。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int maxn = 50;
const double eps = 1e-10; //调到1e-6以上第4问就可以用delta判断切线,但《训练指南》建议,尽量不要调eps
const double pi = acos(-1);
char type[maxn];
int dcmp(double x){
return fabs(x) < eps ? 0 : (x > 0 ? 1 : -1);
}
struct Point{
double x;
double y;
Point(double x = 0, double y = 0):x(x), y(y){}
bool operator < (const Point& e) const{
return dcmp(x - e.x) < 0 || (dcmp(x - e.x) == 0 && dcmp(y - e.y) < 0);
}
bool operator == (const Point& e) const{
return dcmp(x - e.x) == 0 && dcmp(y - e.y) == 0;
}
int read(){
return scanf("%lf%lf", &x, &y);
}
}p[3];
typedef Point Vector;
Vector operator + (Point A, Point B){
return Vector(A.x + B.x, A.y + B.y);
}
Vector operator - (Point A, Point B){
return Vector(A.x - B.x, A.y - B.y);
}
Vector operator * (Point A, double p){
return Vector(A.x * p, A.y * p);
}
Vector operator / (Point A, double p){
return Vector(A.x / p, A.y / p);
}
struct Line{
Point p;
Point v;
Line(){}
Line(Point p, Point v):p(p), v(v){}
int read(){
return scanf("%lf%lf%lf%lf", &p.x, &p.y, &v.x, &v.y);
}
Point point(double t){
return p + v * t;
}
};
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point c, double r):c(c), r(r){}
int read(){
return scanf("%lf%lf%lf", &c.x, &c.y, &r);
}
Point point(double a){
return Point(c.x + r * cos(a), c.y + r * sin(a));
}
};
double Dot(Vector A, Vector B){
return A.x * B.x + A.y * B.y;
}
double Cross(Vector A, Vector B){
return A.x * B.y - B.x * A.y;
}
double Length(Vector A){
return sqrt(Dot(A, A));
}
Vector Rotate(Vector A, double rad){
return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
}
Vector Normal(Vector A){
double L = Length(A);
return Vector(-A.y / L, A.x / L);
}
double DistanceToLine(Point P, Point A, Point B){ //点到直线的距离
Vector v1 = B - A;
Vector v2 = P - A;
return fabs(Cross(v1, v2) / Length(v1));
}
double angle(Vector v){ //求向量的极角
return atan2(v.y, v.x);
}
Point GetLineIntersection(Line l1, Line l2){ //求两直线的交点(前提:相交)
Vector u = l1.p - l2.p;
double t = Cross(l2.v, u) / Cross(l1.v, l2.v);
return l1.point(t);
}
int getLineCircleIntersection(Line l, Circle C, double& t1, double& t2, vector<Point>& sol){ //求直线与圆的交点
double a = l.v.x;
double b = l.p.x - C.c.x;
double c = l.v.y;
double d = l.p.y - C.c.y;
double e = a * a + c * c;
double f = 2 * (a * b + c * d);
double g = b * b + d * d - C.r * C.r;
double delta = f * f - 4 * e * g;
double dist = DistanceToLine(C.c, l.p, l.p+l.v);
if(dcmp(dist - C.r) == 0){ //相切,此处需特殊判断,不能用delta
t1 = t2 = -f / (2 * e);
sol.push_back(l.point(t1));
return 1;
}
if(dcmp(delta) < 0) return 0; //相离
else{ //相交
t1 = (-f - sqrt(delta)) / (2 * e); sol.push_back(l.point(t1));
t2 = (-f + sqrt(delta)) / (2 * e); sol.push_back(l.point(t2));
return 2;
}
}
int GetCircleCircleIntersection(Circle C1, Circle C2, vector<Point>& sol){ //求圆与圆的交点
double d = Length(C1.c - C2.c);
if(dcmp(d) == 0){
if(dcmp(C1.r - C2.r) == 0) return -1; //两圆重合
return 0; //同心圆但不重合
}
if(dcmp(C1.r + C2.r - d) < 0) return 0; //外离
if(dcmp(fabs(C1.r - C2.r) - d) > 0) return 0; //内含
double a = angle(C2.c - C1.c);
double da = acos((C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d));
Point p1 = C1.point(a + da);
Point p2 = C1.point(a - da);
sol.push_back(p1);
if(p1 == p2) return 1; //外切
sol.push_back(p2);
return 2;
}
Circle CircumscribedCircle(Point p1, Point p2, Point p3){ //求三角形的外心
double Bx = p2.x - p1.x, By = p2.y - p1.y;
double Cx = p3.x - p1.x, Cy = p3.y - p1.y;
double D = 2 * (Bx * Cy - By * Cx);
double cx = (Cy * (Bx * Bx + By * By) - By * (Cx * Cx + Cy * Cy)) / D + p1.x;
double cy = (Bx * (Cx * Cx + Cy * Cy) - Cx * (Bx * Bx + By * By)) / D + p1.y;
Point p(cx, cy);
return Circle(p, Length(p1-p));
}
Circle InscribedCircle(Point p1, Point p2, Point p3){ //求三角形的内切圆
double a = Length(p3 - p2);
double b = Length(p3 - p1);
double c = Length(p2 - p1);
Point p = (p1 * a + p2 * b + p3 * c) / (a + b + c);
return Circle(p, DistanceToLine(p, p2, p3));
}
int TangentLineThroughPoint(Point p, Circle C, Vector *v){ //求点到圆的直线
Vector u = C.c - p;
double dist = Length(u);
if(dcmp(dist - C.r) < 0) return 0;
else if(dcmp(dist - C.r) < eps){
v[0] = Rotate(u, pi / 2);
return 1;
}
else{
double ang = asin(C.r / dist);
v[0] = Rotate(u, ang);
v[1] = Rotate(u, -ang);
return 2;
}
}
void CircleThroughAPointAndTangentToALineWithRadius(Point p, Point p1, Point p2, double r){
Vector AB = p2 - p1;
Vector change1 = Rotate(AB, pi / 2) / Length(AB) * r;
Vector change2 = Rotate(AB, -pi / 2) / Length(AB) * r;
Line l1(p1 + change1, AB);
Line l2(p1 + change2, AB);
vector<Point> sol;
sol.clear();
double t1, t2;
int cnt1 = getLineCircleIntersection(l1, Circle(p, r), t1, t2, sol);
int cnt2 = getLineCircleIntersection(l2, Circle(p, r), t1, t2, sol);
int cnt = cnt1 + cnt2;
if(cnt) sort(sol.begin(), sol.end());
printf("[");
for(int i = 0; i < cnt; i++){
printf("(%.6f,%.6f)", sol[i].x, sol[i].y);
if(cnt == 2 && !i) printf(",");
}
puts("]");
}
void CircleTangentToTwoLinesWithRadius(Point A, Point B, Point C, Point D, double r){
Vector AB = B - A;
Vector change = Normal(AB) * r;
Point newA1 = A + change;
Point newA2 = A - change;
Vector CD = D - C;
Vector update = Normal(CD) * r;
Point newC1 = C + update;
Point newC2 = C - update;
Point p[5];
p[0] = GetLineIntersection(Line(newA1, AB), Line(newC1, CD));
p[1] = GetLineIntersection(Line(newA1, AB), Line(newC2, CD));
p[2] = GetLineIntersection(Line(newA2, AB), Line(newC1, CD));
p[3] = GetLineIntersection(Line(newA2, AB), Line(newC2, CD));
sort(p, p + 4);
printf("[");
printf("(%.6f,%.6f)", p[0].x, p[0].y);
for(int i = 1; i < 4; i++){
printf(",(%.6f,%.6f)", p[i].x, p[i].y);
}
puts("]");
}
void CircleTangentToTwoDisjointCirclesWithRadius(Circle C1, Circle C2, double r){
Vector CC = C2.c - C1.c;
double rdist = Length(CC);
if(dcmp(2 * r - rdist + C1.r + C2.r) < 0) puts("[]");
else if(dcmp(2 * r - rdist + C1.r + C2.r) == 0){
double ang = angle(CC);
Point A = C1.point(ang);
Point B = C2.point(ang + pi);
Point ret = (A + B) / 2;
printf("[(%.6f,%.6f)]\n", ret.x, ret.y);
}
else{
Circle A = Circle(C1.c, C1.r + r);
Circle B = Circle(C2.c, C2.r + r);
vector<Point> sol;
sol.clear();
GetCircleCircleIntersection(A, B, sol);
sort(sol.begin(), sol.end());
printf("[(%.6f,%.6f),(%.6f,%.6f)]\n", sol[0].x, sol[0].y, sol[1].x, sol[1].y);
}
}
int main()
{
while(scanf("%s", type) == 1){
if(strcmp(type, "CircumscribedCircle") == 0){
Point p1, p2, p3;
p1.read();
p2.read();
p3.read();
Circle ret = CircumscribedCircle(p1, p2, p3);
printf("(%f,%f,%f)\n", ret.c.x, ret.c.y, ret.r);
}
else if(strcmp(type, "InscribedCircle") == 0){
Point p1, p2, p3;
p1.read();
p2.read();
p3.read();
Circle ret = InscribedCircle(p1, p2, p3);
printf("(%f,%f,%f)\n", ret.c.x, ret.c.y, ret.r);
}
else if(strcmp(type, "TangentLineThroughPoint") == 0){
Circle C;
Point p;
C.read();
p.read();
Vector v[3];
int cnt = TangentLineThroughPoint(p, C, v);
double ret[3];
for(int i = 0; i < cnt; i++){
ret[i] = angle(v[i]);
if(dcmp(ret[i] - pi) == 0) ret[i] = 0;
if(dcmp(ret[i]) < 0) ret[i] += pi;
}
sort(ret, ret + cnt);
printf("[");
for(int i = 0; i < cnt; i++){
printf("%.6f", ret[i] / pi * 180);
if(cnt == 2 && !i) printf(",");
}
puts("]");
}
else if(strcmp(type, "CircleThroughAPointAndTangentToALineWithRadius") == 0){
Point p, p1, p2;
double r;
p.read();
p1.read();
p2.read();
scanf("%lf", &r);
CircleThroughAPointAndTangentToALineWithRadius(p, p1, p2, r);
}
else if(strcmp(type, "CircleTangentToTwoLinesWithRadius") == 0){
Point A, B, C, D;
double r;
A.read();
B.read();
C.read();
D.read();
scanf("%lf", &r);
CircleTangentToTwoLinesWithRadius(A, B, C, D, r);
}
else{
Circle C1, C2;
double r;
C1.read();
C2.read();
scanf("%lf", &r);
CircleTangentToTwoDisjointCirclesWithRadius(C1, C2, r);
}
}
return 0;
}