生物信息学的研究重点包括单细胞转录组与空间转录组。单细胞转录组提供了每个细胞内基因表达信息,结合空间转录组可以了解这些细胞在组织甚至器官级别的分布,对于理解动物发育或疾病意义重大。随着近几年的持续火热,单细胞测序技术也从单纯的转录组测序发展为多组学联合分析,包括基因组、转录组、表观基因组、蛋白组以及有空间水平的多组学研究(如空间转录组)。单细胞多组学技术能多层次、多角度地描绘细胞间的异质性,挖掘各层组学之间的直接和潜在联系,从而更加全面和系统地描绘细胞的状态和命运在生命科学和医学多领域有广泛的应用前景。
理解一种疾病的某种现象仅使用一种数据类型是远远不够的,随着高通量测序和多组学的快速发展,生物医学研究开始采取多组学技术结合的方法,机器学习作为从数据中进行学习的算法,可以对不同组学来源(如基因组学、转录组学、蛋白质组学、代谢组学)的数据进行综合分析,开发针对个体多样性的多因素预测模型,可以显著减少需要考虑的潜在治疗组合的空间,并识别其他可能被忽视的组合,从而证明预测治疗可能存在的有效性。应新老客户的培训需求,特举办“集成多组学数据的机器学习在生物医学中的应用”、“单细胞多组学及空间组学数据分析与应用”专题培训班,本次培训主办方为北京软研国际信息技术研究院,承办方为互动派(北京)教育科技有限公司,具体相关事宜通知如下:
1、集成多组学数据的机器学习在生物医学中的应用
2023年08月19日-08月21日
2022年08月26日-08月28日
在线直播(授课六天)
2、单细胞多组学及空间组学数据分析与应用
2023年08月26日-08月27日
2023年09月02日-09月03日
在线直播(授课四天)
多组学培训特色
本次课程共二个专题,均采用腾讯会议在线直播的形式,课后提供无限次回放视频。建立永不解散的课程群,长期互动答疑,学员学完后可以继续与专业老师同学交流问题,巩固学习内容,从而更好地满足学员不同方面的论文及实际科研工作需求。
集成多组学数据的机器学习在生物医学中的应用
通过基础入门+进阶实例演练的讲授思路,从初学及应用研究角度出发,带大家实战演练机器学习在多组学整合分析中的数据处理、预测模型以及生物学意义阐述等,助力大家掌握多种机器学习算法模型的构建以及在多组学联合分析在肿瘤及慢性病中的实际应用,并介绍当下深度学习算法高维组学数据处理,生物网络挖掘的前沿方法,最后以论文复现讲授单细胞组学论文的常用图表制作、细胞差异分析、细胞注释(自动与手动)、蛋白-蛋白相互作用网络构建与可视化,助力于研究创新机器学习算法解决生物学及临床疾病问题与需求。
单细胞多组学及空间组学数据分析
采用理论加实操的授课方式,帮助学员掌握高通量测序原理及数据的预处理和质量控制方法,Linux命令行操作和R语言编程知识。并结合案例展示最新的空间组学概念和技术,帮助学员掌握利用spaceranger和Seurat处理10X Visium空间转录组数据的方法。结合案例分析展示如何使用单细胞数据和空间组学数据设计和实施最前沿的医学研究项目。通过介绍生物信息学中常用到的机器学习和深度学习算法概念和基本原理、探讨它们在基因表达数据、生物网络分析和高通量测序数据分析中的具体应用。结合案例培养学员应用算法解决临床医学问题的能力。
培训讲师
专题一:由教育部直属全国重点大学,国家“双一流”A类,“985”, “211”重点建设高校医学院副教授,硕士生导师讲授。中科院院士团队骨干成员,美国Top50大学博士,博士后。近五年发表SCI论文10余篇。主持和参与国家级,省部级自然科学基金项目多项,拥有多年生物医学数据挖掘结合人工智能算法研究经验。主要擅长多组学联合分析在肿瘤等疾病的机制研究和生物多组学的算法开发。
专题二:由广东省重点院校医药信息工程学院讲师讲授,主讲《基因组信息学》,《生物信息学》,《系统生物学》等生物信息专业课程;美国印第安纳大学计算生物与生物信息中心访问学者,南方医科大学基础医学院博士后;研究方向为基因组多组学数据分析,基因组数据分析软件开发及计算流程搭建,发表相关SCI论文11篇。主持广东省单细胞技术与应用重点实验室发放基金一项,广州市基础与应用基础研究专题一项。
课程大纲
集成多组学数据的