Description
You have N integers, A1, A2, … , AN. You need to deal with two kinds
of operations. One type of operation is to add some given number to
each number in a given interval. The other is to ask for the sum of
numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000. The
second line contains N numbers, the initial values of A1, A2, … ,
AN. -1000000000 ≤ Ai ≤ 1000000000. Each of the next Q lines
represents an operation. “C a b c” means adding c to each of Aa,
Aa+1, … , Ab. -10000 ≤ c ≤ 10000. “Q a b” means querying the sum of
Aa, Aa+1, … , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
Sample Output
4
55
9
15
HINT
The sums may exceed the range of 32-bit integers.
题解
你拍一我拍一大家一起刷水题
区间修改区间求和线段树搞定
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
struct node
{
int lc,rc,l,r;LL c,lazy;
bool ch;
}tr[210000];int trlen;
void upd(int now)
{
int lc=tr[now].lc,rc=tr[now].rc;
tr[lc].c+=(LL)tr[now].lazy*(tr[lc].r-tr[lc].l+1);tr[lc].lazy+=tr[now].lazy,tr[lc].ch=true;
tr[rc].c+=(LL)tr[now].lazy*(tr[rc].r-tr[rc].l+1);tr[rc].lazy+=tr[now].lazy,tr[rc].ch=true;
tr[now].lazy=0;tr[now].ch=false;
}
void bt(int l,int r)
{
int now=++trlen;
tr[now].l=l;tr[now].r=r;
tr[now].lc=tr[now].rc=-1;tr[now].c=tr[now].lazy=0;
tr[now].ch=false;
if(l<r)
{
int mid=(l+r)/2;
tr[now].lc=trlen+1;bt(l,mid);
tr[now].rc=trlen+1;bt(mid+1,r);
}
}
void change(int now,int l,int r,LL c)
{
if(tr[now].l==l && tr[now].r==r)
{
tr[now].c+=(LL)c*(tr[now].r-tr[now].l+1);
tr[now].lazy+=c;tr[now].ch=true;
return ;
}
int lc=tr[now].lc,rc=tr[now].rc;
int mid=(tr[now].l+tr[now].r)/2;
if(tr[now].ch)upd(now);
if(r<=mid)change(lc,l,r,c);
else if(mid+1<=l)change(rc,l,r,c);
else change(lc,l,mid,c),change(rc,mid+1,r,c);
tr[now].c=tr[lc].c+tr[rc].c;
}
LL findsum(int now,int l,int r)
{
if(tr[now].l==l && tr[now].r==r)return tr[now].c;
int lc=tr[now].lc,rc=tr[now].rc;
int mid=(tr[now].l+tr[now].r)/2;
if(tr[now].ch)upd(now);
if(r<=mid)return findsum(lc,l,r);
else if(mid+1<=l)return findsum(rc,l,r);
else return findsum(lc,l,mid)+findsum(rc,mid+1,r);
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);bt(1,n);
for(int i=1;i<=n;i++)
{
int x;
scanf("%d",&x);
change(1,i,i,x);
}
while(m--)
{
char ss[10];
int u,v,c;
scanf("%s%d%d",ss+1,&u,&v);
if(ss[1]=='Q')printf("%lld\n",findsum(1,u,v));
else
{
scanf("%d",&c);
change(1,u,v,c);
}
}
return 0;
}

本文介绍了一种使用线段树解决区间修改与查询问题的方法。通过建立线段树结构,可以高效地完成区间内数值的批量修改及求和操作。文章提供了一个具体的实现示例,包括初始化线段树、更新节点值、懒惰传播等关键步骤。
408

被折叠的 条评论
为什么被折叠?



