题目
Once Again
PROBLEM
You are given an array of positive integers a1, a2, ..., an × T of length n × T. We know that for any i > n it is true that ai = ai - n. Find the length of the longest non-decreasing sequence of the given array.
The first line contains two space-separated integers: n, T (1 ≤ n ≤ 100, 1 ≤ T ≤ 107). The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 300).
Print a single number — the length of a sought sequence.
4 3 3 1 4 2
5
The array given in the sample looks like that: 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2. The elements in bold form the largest non-decreasing subsequence.
题目意为,100个随机数循环 T 次形成一个数列,求该数列的最长不递减子数列。
循环节T数量级较大,不可能直接DP遍历所有的数字。对于每一节,在DP时只需要对本节自己之前以及上一节所有的数字比较(每个循环节至少会增加一个数字)。若T小于100,那么在T个循环内必然会出现结果,直接DP即可。在T较大时,只有在每个循环节增加数字大于1时才会出现选择的情况。在T等于100时必然会成为稳定状态,之后为将数字最大化,把循环中次数最多的数字插入在剩余的循环节内。
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
long long int dp[105][105];
static int data2[305];
int data[105];
static int maxn,n,t,mmx;
static long long int ans;
cin >> n >> t;
mmx = min(n*n, n*t);
for (size_t i = 0; i < n; i++)
{
cin >> data[i];
data2[data[i]]++;
}
for (size_t i = 0; i < 305; i++)
{
maxn = max(maxn, data2[i]);
}
for (size_t i = 0; i <mmx/n; i++)
{
for (size_t s = 0; s < n; s++)
{
for (size_t q = 0; q < n; q++)
{
if (i==0)
{
dp[i][s] = 1;
break;
}
if (data[s]>=data[q])
{
dp[i][s] = max(dp[i][s], dp[i - 1][q]+1);
}
}
for (size_t q = 0; q < s; q++)
{
if (data[s] >= data[q])
{
dp[i][s] = max(dp[i][s], dp[i][q]+1);
}
}
}
}
for (size_t i = 0; i < n; i++)
{
ans = max(ans, dp[mmx / n - 1][i]);
}
cout << ans + maxn*(t - mmx / n);
return 0;
}