题目链接:
ZOJ 3609 Modular Inverse
题意:
求ax = 1 (mod n),给出a,n的最小正数解x,如果不存在输出Not Exist.
分析:
用扩展欧几里德求乘法逆元。注意是最小正数解!而不是非负数解!
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <climits>
#include <cmath>
#include <ctime>
#include <cassert>
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);
using namespace std;
typedef long long ll;
ll ex_gcd(ll a, ll b, ll& x, ll& y)
{
if(b == 0) {
x = 1, y = 0;
return a;
}
ll d = ex_gcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
int main()
{
int T;
ll a, b;
scanf("%d", &T);
while(T--){
scanf("%lld%lld", &a, &b);
ll x, y;
ll d = ex_gcd(a, b, x, y);
if(d != 1) printf("Not Exist\n");
else{
x = (x % b + b) % b;
if(x == 0) x = b;
printf("%lld\n", x);
}
}
return 0;
}