大佬的博客:http://blog.youkuaiyun.com/u013480600/article/details/39026241
题意:
给出n个客户对k种商品的需求量,又给出m个仓库对k种物品的存货量以及对k种物品从i仓库到j客户的一个物品的运费价格,让判断是否可以满足客户需求,然后就是如果满足求出最小的运费.
分析:
首先我们必须判断m个仓库是否有足够的k种商品给n个客户,如果不足,那么明显就是不行的. 下面假设仓库的商品足够的话:
对于每一种商品我们都算出满足满足顾客需求量的最小运费即可.所以我们对K种商品分开处理如下,假设当前处理第x种商品,建图如下:
源点s编号0, m个仓库编号1到m, n个顾客编号m+1到m+n, 汇点编号m+n+1.
从源点s到每个仓库i有边(s, i, 仓库i对商品x的存货量, 0)
从每个仓库i到顾客j有边(i, j, INF, 仓库i到顾客j的单位X商品的运费)
从每个顾客j到汇点t有边(j, t, 顾客j对X商品的需求量, 0)
然后我们求最小费用最大流即可求出N个顾客对第X种商品的最小运费.
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1e9
using namespace std;
const int maxn = 105;
struct Edge
{
int from,to,cap,flow,cost;
Edge(){}
Edge(int f,int t,int c,int fl,int co):from(f),to(t),cap(c),flow(fl),cost(co){}
};
struct MCMF
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
int d[maxn];
int p[maxn];
int a[maxn];
void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=0;i<n;++i) G[i].clear();
}
void AddEdge(int from,int to,int cap,int cost)
{
edges.push_back(Edge(from,to,cap,0,cost));
edges.push_back(Edge(to,from,0,0,-cost));
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BellmanFord(int &flow, int &cost)
{
for(int i=0;i<n;++i) d[i]=INF;
memset(inq,0,sizeof(inq));
d[s]=0, a[s]=INF, inq[s]=true, p[s]=0;
queue<int> Q;
Q.push(s);
while(!Q.empty())
{
int u=Q.front(); Q.pop();
inq[u]=false;
for(int i=0;i<G[u].size();++i)
{
Edge &e=edges[G[u][i]];
if(e.cap>e.flow && d[e.to]>d[u]+e.cost)
{
d[e.to]= d[u]+e.cost;
p[e.to]=G[u][i];
a[e.to]= min(a[u],e.cap-e.flow);
if(!inq[e.to]){ Q.push(e.to); inq[e.to]=true; }
}
}
}
if(d[t]==INF) return false;
flow +=a[t];
cost +=a[t]*d[t];
int u=t;
while(u!=s)
{
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -=a[t];
u = edges[p[u]].from;
}
return true;
}
int Min_cost()
{
int flow=0,cost=0;
while(BellmanFord(flow,cost));
return cost;
}
}MM;
int n, m, k;
int need[55][55];
int have[55][55];
int cost[55][55][55];
int main()
{
while(~scanf("%d%d%d", &n, &m, &k) && n)
{
int good[maxn];
bool enough = true;
memset(good, 0, sizeof(good));
for(int i = 1; i <= n; i++)
for(int j = 1; j <= k; j++)
{
scanf("%d", &need[i][j]);
good[j] += need[i][j];
}
for(int i = 1; i <= m; i++)
for(int j = 1; j <= k; j++)
{
scanf("%d", &have[i][j]);
good[j] -= have[i][j];
}
for(int h = 1; h <= k; h++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
scanf("%d", &cost[h][i][j]);
for(int i = 1; i <= k; i++)
if(good[i] > 0)
{
enough = false;
break;
}
if(!enough)
{
puts("-1");
continue;
}
int min_cost = 0;
for(int g = 1; g <= k; g++)
{
int src = 0, dst = n+m+1;
MM.init(n+m+2, src, dst);
for(int i = 1; i <= m; i++)
MM.AddEdge(src, i, have[i][g], 0);
for(int i = 1; i <= n; i++)
MM.AddEdge(m+i, dst, need[i][g], 0);
for(int i = 1; i <= m; i++)
for(int j = 1; j <= n; j++)
MM.AddEdge(i, m+j, INF, cost[g][j][i]);
min_cost += MM.Min_cost();
}
printf("%d\n",min_cost);
}
return 0;
}