辐射传输方程的分解

Decomposition of the Boundary Value Problem for Radiative Transfer Equation of MODIS and MISR instruments

在这里插入图片描述

我才发现公式的变化并没有能够带入进来,读者可自己编号。

0.Notions

Let LLL be the straming-collision operator, and SSS is scattering operator:
LI=Ω⋅∇I(r,Ω)+σ(r,Ω)I(r,Ω)S=∫4πσs(r,Ω′,Ω)I(r,Ω′)dΩ′ LI = \Omega\cdot \nabla I(r,\Omega)+\sigma(r,\Omega)I(r,\Omega)\\ S=\int_{4\pi}\sigma_s(r,\Omega',\Omega)I(r,\Omega')d\Omega' LI=ΩI(r,Ω)+σ(r,Ω)I(r,Ω)S=4πσs(r,Ω,Ω)I(r,Ω)dΩ
To descirbe reflective properties of boundary δV\delta VδV, the scattering operator defined on the boundary δV\delta VδV for radiation exiting the regine VVV is indroduced as
RI+=1π∫δVdrB′∫n(rB′)⋅Ω′>0ρB(rB′,Ω′;rB,Ω)∣n(rB′)⋅Ω′∣I+(rB′,Ω′)dΩ′ \mathcal{R}I^+=\frac{1}{\pi}\int_{\delta V} dr_B'\int_{n(r_B')\cdot \Omega'>0}\rho_B(r_B',\Omega';r_B,\Omega)|n(r_B')\cdot \Omega'|I^+(r_B',\Omega')d\Omega' RI+=π1δVdrBn(rB)Ω>0ρB(rB,Ω;rB,Ω)n(rB)ΩI+(rB,Ω)dΩ
Here, we use I+I^+I+ to represent the radiance exiting and I−I^-I entering domina V. And then, the stationary radiative transfer equation could be expressed as
LI=SI+qI−=RI+qB LI = SI +q \quad I^-=\mathcal{R}I+q_B LI=SI+qI=RI+qB
And if R\mathcal{R}R is 0 and qBq_BqB is 0, the porblem is called standard porblem and the straming-collision oprator would be write as L0L_0L0.

1.Black Soil Problem

The RTE is
LI=SI+qI−=RI+qB. LI = SI +q \quad I^-=\mathcal{R}I+q_B. LI=SI+qI=RI+qB.
As in Green function blog before, we have
I(r,Ω)=Ibs(r,Ω)+Irest(r,Ω) I(r,\Omega) = I_{bs}(r,\Omega)+I_{rest}(r,\Omega) I(r,Ω)=Ibs(r,Ω)+Irest(r,Ω)
The first question is black soil problem, means that the bottom of canopy is non-reflecting surface (soil absorption is 1, black soil), so its the solution of
LIbs=SIbsIbs(rt,Ω)=cTδ(Ω,Ω0)+d(rt,Ω)Ibs−(rl,Ω)=0Ibs−(rb,Ω)=0 \begin{aligned} &LI_{bs}=SI_{bs}\\ &I_{bs}^(r_t,\Omega)=c_T\delta(\Omega,\Omega_0)+d(r_t,\Omega)\\ &I_{bs}^-(r_l,\Omega)=0\\ &I_{bs}^-(r_b,\Omega)=0 \end{aligned} LIbs=SIbsIbs(rt,Ω)=cTδ(Ω,Ω0)+d(rt,Ω)Ibs(rl,Ω)=0Ibs(rb,Ω)=0
Here, we assumte the lateral effects is zero.

2.Canopy-Surface Interation

For notion, we use IrI_rIr for the IrestI_{rest}Irest. We have that
LIr=SIr LI_r=SI_r LIr=SIr
and the boundary conditions is
Ir−(rt,Ω)=0Ir−(rl,Ω)=0Ir−(rb,Ω)=RI+ \begin{aligned} &I_r^-(r_t,\Omega)=0\\ &I_r^-(r_l,\Omega)=0\\ &I_r^-(r_b,\Omega)=\mathcal{R}I^+ \end{aligned} Ir(rt,Ω)=0Ir(rl,Ω)=0Ir(rb,Ω)=RI+
The solution IrI_rIr of this boundary value problem depend on the solution of “complete tranport problem” I=Ibs+IrI=I_{bs}+I_rI=Ibs+Ir (since RI+\mathcal{R}I^+RI+) is also not known. It need further decompose.

The lower boundary conditions can be rewritten as
Ir−(rb,Ω)=RI+TT I_r^-(r_b,\Omega)=\frac{\mathcal{R}I^+}{T}T Ir(rb,Ω)=TRI+T
Here, TTT​ is downward radiation flux density at canopy bottom, i.e.,
T(rb)=∫n(rb)⋅Ω′>0I(rb,Ω′)∣Ω′⋅n(rb)∣dΩ′,  rb∈δV T(r_b)=\int_{n(r_b)\cdot\Omega'>0}I(r_b,\Omega')|\Omega'\cdot n(r_b)|d\Omega', \ \ r_b\in\delta V T(rb)=n(rb)Ω>0I(rb,Ω)Ωn(rb)dΩ,  rbδV
The ratio RI+T\frac{\mathcal{R}I^+}{T}TRI+ is a factor of π\piπ smaller than HDRF (since there is no 1/π1/\pi1/π in the dominator compared to HDRF).

And then ground BHR could be writen as
ρeff(rb)=∫n(rb)⋅Ω′>0∫n(rb)⋅Ω<0∣n(rb)⋅Ω′∣π−1ρb(rb,Ω′,Ω)∣Ω⋅n(rb)∣I(rb,Ω′)dΩ′dΩ∫n(rb)⋅Ω′>0∣Ω′⋅n(rb)∣I(rb,Ω′)dΩ′ \rho_{eff}(r_b)=\frac{\int_{n(r_b)\cdot\Omega'>0}\int_{n(r_b)\cdot\Omega<0}|n(r_b)\cdot\Omega'|\pi^{-1}\rho_b(r_b,\Omega',\Omega)|\Omega\cdot n(r_b)|I(r_b,\Omega')d\Omega'd\Omega}{\int_{n(r_b)\cdot\Omega'>0}|\Omega'\cdot n(r_b)|I(r_b,\Omega')d\Omega'} ρeff(rb)=n(rb)Ω>0Ωn(rb)I(rb,Ω)dΩn(rb)Ω>0n(rb)Ω<0n(rb)Ωπ1ρb(rb,Ω,Ω)∣Ωn(rb)I(rb,Ω)dΩdΩ
Here, ρb\rho_bρb is the BRF of canopy ground. So we could find that the denomator is actually the TTT, which means that ρeff=somethingT\rho_{eff}=\frac{something}{T}ρeff=Tsomething.

For horizontally inhomogeneous vegetation canopy, TTT vary a lot, but BHR would not so.

Now, we introduce the effective ground anisotropy:
db(rb,Ω)=RI+Tρeff=1ρeff⋅∫2π+ρb(rb,Ω′,Ω)∣n(rb)⋅Ω′∣I(rb,Ω′)dΩ′π∫2π−∣Ω′⋅n(rb)∣I(rb,Ω′)dΩ′ \begin{aligned} d_b(r_b,\Omega)&=\frac{\mathcal{R}I^+}{T\rho_{eff}}\\ &=\frac{1}{\rho_{eff}}\cdot\frac{\int_{2\pi+}\rho_b(r_b,\Omega',\Omega)|n(r_b)\cdot\Omega'|I(r_b,\Omega')d\Omega'}{\pi\int_{2\pi-}|\Omega'\cdot n(r_b)|I(r_b,\Omega')d\Omega'} \end{aligned} db(rb,Ω)=TρeffRI+=ρeff1π2πΩn(rb)I(rb,Ω)dΩ2π+ρb(rb,Ω,Ω)n(rb)ΩI(rb,Ω)dΩ
This value seems strange. But if we use ρeff=somethingT\rho_{eff}=\frac{something}{T}ρeff=Tsomething​, we could find that this is actually tha ratio of reflected flux density and radiance. So its cosine-weighted intergral over upward directions is unity:
∫2π+db(rb,Ω)∣n(rb)⋅Ω∣dΩ=1. \int_{2\pi+}d_b(r_b,\Omega)|n(r_b)\cdot\Omega|d\Omega=1. 2π+db(rb,Ω)n(rb)Ω∣dΩ=1.
So this term descibed the inhomogenous of the surface., its something with denonimator a flux density and numenator is reflected radiance with some direction.

By using the Equation (12), we obtain
Ir−(rb,Ω)=RI+=ρeffT(rb)db(rb,Ω) I_r^-(r_b,\Omega)=\mathcal{R}I^+=\rho_{eff}T(r_b)d_b(r_b,\Omega) Ir(rb,Ω)=RI+=ρeffT(rb)db(rb,Ω)
Using Green function method with q=Ir−q=I_r^-q=Ir, we obtain
Ir(r,Ω)=∫δVdrb′∫n(rb′)⋅Ω′<0dΩ′GS(r,Ω;rb′,Ω′)ρeff(rb′)db(rb′,Ω′)T(rb′) I_r(r,\Omega)=\int_{\delta V}dr_b'\int_{n(r_b')\cdot\Omega'<0}d\Omega'G_S(r,\Omega;r_b',\Omega')\rho_{eff}(r_b')d_b(r_b',\Omega')T(r_b') Ir(r,Ω)=δVdrbn(rb)Ω<0dΩGS(r,Ω;rb,Ω)ρeff(rb)db(rb,Ω)T(rb)

Substituing this into Equation (5) we get that
I(r,Ω)=Ibs(r,Ω)+∫δVbdrb′ρeff(rb′)T(rb′)J(r,Ω;rb′) I(r,\Omega)=I_{bs}(r,\Omega)+\int_{\delta V_b}dr_b'\rho_{eff}(r_b')T(r_b')J(r,\Omega;r_b') I(r,Ω)=Ibs(r,Ω)+δVbdrbρeff(rb)T(rb)J(r,Ω;rb)
where
J(r,Ω;rb′)=∫n(rb′)⋅Ω′<0dΩ′GS(r,Ω;r′,Ω′)db(rb′,Ω′) J(r,\Omega;r_b')=\int_{n(r_b')\cdot\Omega'<0}d\Omega'G_S(r,\Omega;r',\Omega')d_b(r_b',\Omega') J(r,Ω;rb)=n(rb)Ω<0dΩGS(r,Ω;r,Ω)db(rb,Ω)
By the theory of Green function, JJJ is the intensity of radiation field at r with derection Ω\OmegaΩ generated by a point anisotropic source db(rb′,Ω′)δ(rb,rb′)d_b(r_b',\Omega')\delta(r_b,r_b')db(rb,Ω)δ(rb,rb) located at rb′r_b'rb.

With T(rb)=∫n(rb)⋅Ω′>0I(rb,Ω′)∣Ω′⋅n(rb)∣dΩ′T(r_b)=\int_{n(r_b)\cdot\Omega'>0}I(r_b,\Omega')|\Omega'\cdot n(r_b)|d\Omega'T(rb)=n(rb)Ω>0I(rb,Ω)Ωn(rb)dΩ and (16), (17), we obtain
T(rb)=∫n(rb)⋅Ω′>0(Ibs(rb,Ω′)+∫δVdrb′ρeff(rb′)T(rb′)J(rb,Ω′;rb′))∣Ω′⋅n(rb)∣dΩ′ \begin{aligned} T(r_b)=&\int_{n(r_b)\cdot\Omega'>0}(I_{bs}(r_b,\Omega') \\&+\int_{\delta V}dr_b'\rho_{eff}(r_b')T(r_b')J(r_b,\Omega';r_b'))|\Omega'\cdot n(r_b)|d\Omega' \end{aligned} T(rb)=n(rb)Ω>0(Ibs(rb,Ω)+δVdrbρeff(rb)T(rb)J(rb,Ω;rb))Ωn(rb)dΩ
By letting
Tbs=∫n(rb)⋅Ω′>0Ibs(rb,Ω)∣Ω′⋅n(rb)∣dΩ′ T_{bs}=\int_{n(r_b)\cdot\Omega'>0}I_{bs}(r_b,\Omega)|\Omega'\cdot n(r_b)|d\Omega' Tbs=n(rb)Ω>0Ibs(rb,Ω)Ωn(rb)dΩ
and
Gd(rb,rb′)=∫n(rb)⋅Ω′>0dΩ′J(rb,Ω′;rb′)∣Ω′⋅n(rb′)∣=∫n(rb)⋅Ω′>0∣Ω′⋅n(rb′)∣dΩ′∫n(rb′)⋅Ω′<0dΩ′GS(r,Ω;r′,Ω′)db(rb′,Ω′) \begin{aligned} G_d(r_b,r_b')&= \int_{n(r_b)\cdot\Omega'>0}d\Omega'J(r_b,\Omega';r_b')|\Omega'\cdot n(r_b')|\\ &=\int_{n(r_b)\cdot\Omega'>0}|\Omega'\cdot n(r_b')|d\Omega'\int_{n(r_b')\cdot\Omega'<0}d\Omega'G_S(r,\Omega;r',\Omega')d_b(r_b',\Omega') \end{aligned} Gd(rb,rb)=n(rb)Ω>0dΩJ(rb,Ω;rb)Ωn(rb)=n(rb)Ω>0Ωn(rb)dΩn(rb)Ω<0dΩGS(r,Ω;r,Ω)db(rb,Ω)
Noting that GdG_dGd is downward radiation flux density at rbr_brb due to point anisotropic source db(rb,Ω′)δ(rb,rb′)d_b(r_b,\Omega')\delta (r_b,r_b')db(rb,Ω)δ(rb,rb).

The (18) becomes
T(rb)=Tbs+∫δVGd(r,r′)ρeff(rb′)T(rb′)drb′ T(r_b)=T_{bs} + \int_{\delta V}G_d(r,r')\rho_{eff}(r_b')T(r_b') dr_b' T(rb)=Tbs+δVGd(r,r)ρeff(rb)T(rb)drb
Since the JJJ is the radiance generated by db(rb′,Ω′)δ(rb,rb′)d_b(r_b',\Omega')\delta(r_b,r_b')db(rb,Ω)δ(rb,rb), so GdG_dGd​ is actually the flux density generated also by it.

Now, we note that
IS(r,Ω)=∫δVdrb′J(r,Ω;rb′)=∫δVdrb′∫n(rb′)⋅Ω′<0dΩ′GS(r,Ω;r′,Ω′)db(rb′,Ω′) \begin{aligned} I_S(r,\Omega) &=\int_{\delta V}dr_b' J(r,\Omega;r_b')\\ &=\int_{\delta V}dr_b'\int_{n(r_b')\cdot\Omega'<0}d\Omega'G_S(r,\Omega;r',\Omega')d_b(r_b',\Omega') \end{aligned} IS(r,Ω)=δVdrbJ(r,Ω;rb)=δVdrbn(rb)Ω<0dΩGS(r,Ω;r,Ω)db(rb,Ω)
is the intensity of radiation field in canopy generated by anisotropic and heterogeneoussource source dbd_bdb located at canopy bottom. It satiesfy the equation
LIS=SIS LI_S=SI_S LIS=SIS
and boundary condtions IS−(rt,Ω)=0I_S^-(r_t,\Omega)=0IS(rt,Ω)=0, IS−(rl,Ω)=0I_S^-(r_l,\Omega)=0IS(rl,Ω)=0 and I−(rb,Ω)=db(rb,Ω)I^-(r_b,\Omega)=d_b(r_b,\Omega)I(rb,Ω)=db(rb,Ω).

This is the second “basic problem”, “S problem”. It follows that
∫δVGd(r,rb′)drb′=∫n(rb)⋅Ω>0IS(rb,Ω)∣Ω⋅n(rb)∣dΩ \int_{\delta_V}G_d(r,r_b')dr_b'=\int_{n(r_b)\cdot\Omega>0}I_S(r_b,\Omega)|\Omega\cdot n(r_b)|d\Omega δVGd(r,rb)drb=n(rb)Ω>0IS(rb,Ω)∣Ωn(rb)dΩ
The integral of GdG_dGd over boundary is downward flux at rbr_brb which acount for contribution from all anisotropic sources at canopy bottom.

Rethinking the equation (16), the J is actually a weight to weight the all reflected flux density.

The ground BHR (Equation (11)) and the effective ground anisotropy is independent on vegetation canopy and are known.

Once GdG_dGd is given, one can solve Equation (18) and substitude it into (15).

Solution of horizontally homogeneous vegetation canopy with Lambertian surface

If we assume that the gournd BRF is homegeneous Lambertian surface, then, TbsT_{bs}Tbs​ and T is independent to (x,y) . And gournd BHR become
ρeff=∫n(rb)⋅Ω′>0∫n(rb)⋅Ω<0∣n(rb)⋅Ω′∣π−1ρb(rb,Ω′,Ω)∣Ω⋅n(rb)∣I(rb,Ω′)dΩ′dΩ∫n(rb)⋅Ω′>0∣Ω′⋅n(rb)∣I(rb,Ω′)dΩ′=ρb∫n(rb)⋅Ω<0dΩ∣Ω⋅n(rb)∣π=ρb \begin{aligned} \rho_{eff}&=\frac{\int_{n(r_b)\cdot\Omega'>0}\int_{n(r_b)\cdot\Omega<0}|n(r_b)\cdot\Omega'|\pi^{-1}\rho_b(r_b,\Omega',\Omega)|\Omega\cdot n(r_b)|I(r_b,\Omega')d\Omega'd\Omega}{\int_{n(r_b)\cdot\Omega'>0}|\Omega'\cdot n(r_b)|I(r_b,\Omega')d\Omega'}\\ &=\frac{\rho_b\int_{n(r_b)\cdot\Omega<0}d\Omega|\Omega\cdot n(r_b)|}{\pi}\\ &=\rho_b \end{aligned} ρeff=n(rb)Ω>0Ωn(rb)I(rb,Ω)dΩn(rb)Ω>0n(rb)Ω<0n(rb)Ωπ1ρb(rb,Ω,Ω)∣Ωn(rb)I(rb,Ω)dΩdΩ=πρbn(rb)Ω<0dΩ∣Ωn(rb)=ρb
and effective ground anisotropy is
db(rb,Ω)=RI+Tρeff=1ρeff⋅∫2π+ρb(rb,Ω′,Ω)∣n(rb)⋅Ω′∣I(rb,Ω′)dΩ′π∫2π−∣Ω′⋅n(rb)∣I(rb,Ω′)dΩ′=ρbρeffπ=1π \begin{aligned} d_b(r_b,\Omega)&=\frac{\mathcal{R}I^+}{T\rho_{eff}}\\ &=\frac{1}{\rho_{eff}}\cdot\frac{\int_{2\pi+}\rho_b(r_b,\Omega',\Omega)|n(r_b)\cdot\Omega'|I(r_b,\Omega')d\Omega'}{\pi\int_{2\pi-}|\Omega'\cdot n(r_b)|I(r_b,\Omega')d\Omega'}\\ &=\frac{\rho_b}{\rho_{eff}\pi}=\frac{1}{\pi} \end{aligned} db(rb,Ω)=TρeffRI+=ρeff1π2πΩn(rb)I(rb,Ω)dΩ2π+ρb(rb,Ω,Ω)n(rb)ΩI(rb,Ω)dΩ=ρeffπρb=π1
Then the Equation (21) become
T=Tbs+∫δVGd(rb,rb′)ρeffTdrb′=Tbs+ρbT∫δVGd(rb,rb′)drb′→T(1−ρbTRS)=Tbs→T=Tbs1−ρbRs \begin{aligned} T &=T_{bs} + \int_{\delta V}G_d(r_b,r_b')\rho_{eff}T dr_b'\\ &= T_{bs} + \rho_bT\int_{\delta V}G_d(r_b,r_b')dr_b'\\ &\rightarrow T(1-\rho_bTR_S)=T_{bs}\\ &\rightarrow T=\frac{T_{bs}}{1-\rho_bR_s} \end{aligned} T=Tbs+δVGd(rb,rb)ρeffTdrb=Tbs+ρbTδVGd(rb,rb)drbT(1ρbTRS)=TbsT=1ρbRsTbs
where
RS=∫δVGd(rb,rb′)drb′ R_S=\int_{\delta V}G_d(r_b,r_b')dr_b' RS=δVGd(rb,rb)drb
is the downward flux density at rbr_brb generated by source 1π\frac{1}{\pi}π1 (since dbd_bdb has become 1/π1/\pi1/π and combine the Equation (24) and (23)).

Substituting Eq. (22) into Eq. (16), we obtain:
I(r,Ω)=Ibs(r,Ω)+IS(r,Ω)ρeffT I(r,\Omega)=I_{bs}(r,\Omega)+I_S(r,\Omega)\rho_{eff}T I(r,Ω)=Ibs(r,Ω)+IS(r,Ω)ρeffT
Using ρeff=ρb\rho_{eff}=\rho_bρeff=ρb, Then, by Eq.(27), we obtain:
I(r,Ω)=Ibs(r,Ω)+Tbsρb1−ρbRSIS(r,Ω) I(r,\Omega)=I_{bs}(r,\Omega)+\frac{T_{bs}\rho_{b}}{1-\rho_bR_S}I_S(r,\Omega) I(r,Ω)=Ibs(r,Ω)+1ρbRSTbsρbIS(r,Ω)
So, the solution of original boundary problem is decomposed into the solution of black-soil problem and S problem.

Solution of horizontally inhomogeneous vegetation canopy

In this case, the solution of Eq. (21) is not directly Eq. (27), and approximation is performed. Consider the ratio
RS(rb)=∫δVGd(rb,rb′)ρeff(rb′)T(rb′)drb′ρeff(rb′)T(rb′) R_S(r_b)=\frac{\int_{\delta V}G_d(r_b,r_b')\rho_{eff}(r_b')T(r_b')dr_b'}{\rho_{eff}(r_b')T(r_b')} RS(rb)=ρeff(rb)T(rb)δVGd(rb,rb)ρeff(rb)T(rb)drb
which is BHR calculated for canopy illuminated by anisotropic sources ρeff(rb′)T(rb′)db(rb′,Ω′)\rho_{eff}(r_b')T(r_b')d_b(r_b',\Omega')ρeff(rb)T(rb)db(rb,Ω) from below. To understand this, we could think that the numerator is the responsed flux density at rbr_brb due to radiance ρeff(rb′)T(rb′)db(rb′,Ω′)\rho_{eff}(r_b')T(r_b')d_b(r_b',\Omega')ρeff(rb)T(rb)db(rb,Ω) by Eq. (24), and the denomator is
∫n(rb′)⋅Ω′<0ρeff(rb′)T(rb′)d(rb′Ω′)∣n(rb′)⋅Ω′∣dΩ′ \int_{n(r_b')\cdot\Omega'<0}\rho_{eff}(r_b')T(r_b')d(r_b'\Omega')|n(r_b')\cdot\Omega'|d\Omega' n(rb)Ω<0ρeff(rb)T(rb)d(rbΩ)n(rb)ΩdΩ
which is equal to ρeff(rb′)T(rb′)\rho_{eff}(r_b')T(r_b')ρeff(rb)T(rb).

Since the T varies, so the RsR_sRs varies. But linear operator theory has the conclusion that a continous positive linear operator BBB minimum mnm_nmn and maximum MnM_nMn values of the function ηn=(Bnu)1/n\eta_n=(\sqrt{B^nu})^{1/n}ηn=(Bnu)1/n converge to mazimum eigenvalue ρ(B)\rho(B)ρ(B) for any chosen positive function uuu as n tend to infinity.

Here, the numerator in Eq. (35) can be treated as a positive intergral operator BBB with a kernel GdG_dGd. We have n=1n=1n=1, and we use the maximum eigenvalue RSˉ\bar{R_S}RSˉ of BBB with kernel GdG_dGd.

Then , we rewrite the Eq. (25) as
T(rb)=Tbs(rb)+RSˉρeff(rb)T(rb). T(r_b)=T_{bs}(r_b)+\bar{R_S}\rho_{eff}(r_b)T(r_b). T(rb)=Tbs(rb)+RSˉρeff(rb)T(rb).
Then we have
T(rb)=Tbs(rb)1−RSˉρeff(rb) T(r_b)=\frac{T_{bs}(r_b)}{1-\bar{R_S}\rho_{eff}(r_b)} T(rb)=1RSˉρeff(rb)Tbs(rb)
Substitude this into Eq. (16), we obtain
I(r,Ω)=Ibs(r,Ω)+∫δVdrb′J(rb′;rb′,Ω′)ρeff(rb′)Tbs(rb′)1−RSˉρeff(rb′) I(r,\Omega)=I_{bs}(r,\Omega)+\int_{\delta_V}dr_b'J(r_b';r_b',\Omega')\rho_{eff}(r_b')\frac{T_{bs}(r_b')}{1-\bar{R_S}\rho_{eff}(r_b')} I(r,Ω)=Ibs(r,Ω)+δVdrbJ(rb;rb,Ω)ρeff(rb)1RSˉρeff(rb)Tbs(rb)
where J has already mentioned below as
J(r,Ω;rb′)=∫n(rb′)⋅Ω′<0dΩ′GS(r,Ω;r′,Ω′)db(rb′,Ω′) J(r,\Omega;r_b')=\int_{n(r_b')\cdot\Omega'<0}d\Omega'G_S(r,\Omega;r',\Omega')d_b(r_b',\Omega') J(r,Ω;rb)=n(rb)Ω<0dΩGS(r,Ω;r,Ω)db(rb,Ω)
For futher simlification, we replace the JJJ​ with its mean value over the canopy bottom, then this becomes
I(r,Ω)=Ibs(r,Ω)+∫δVdrb′J(rb′;rb′,Ω′)ρeffˉTbsˉ1−RSˉρeffˉ I(r,\Omega)=I_{bs}(r,\Omega)+\int_{\delta_V}dr_b'J(r_b';r_b',\Omega')\frac{\bar{\rho_{eff}}\bar{T_{bs}}}{1-\bar{R_S}\bar{\rho_{eff}}} I(r,Ω)=Ibs(r,Ω)+δVdrbJ(rb;rb,Ω)1RSˉρeffˉρeffˉTbsˉ
Then the integral of JJJ is ISI_SIS​ by Eq. (22), then we have
I(r,Ω)=Ibs(r,Ω)+ρeffˉTbsˉ1−RSˉρeffˉIS(r,Ω) I(r,\Omega)=I_{bs}(r,\Omega)+\frac{\bar{\rho_{eff}}\bar{T_{bs}}}{1-\bar{R_S}\bar{\rho_{eff}}}I_S(r,\Omega) I(r,Ω)=Ibs(r,Ω)+1RSˉρeffˉρeffˉTbsˉIS(r,Ω)
Then, the results of original boundary problem become the solution of black soil problem and S problem.

Now, we could rewrite the HDRF of the surface :
HDRF=<I(Ω)>01π∫2π−<I(Ω′)>0∣Ω′⋅n(rb)∣dΩ′=<Ibs(r,Ω)+ρeffˉTbsˉ1−RSˉρeffˉIS(r,Ω)>1π∫2π−<I(Ω′)>0∣Ω′⋅n(rb)∣dΩ′=Rbs(Ω)+ρeffˉ1−RSˉρeffˉtbsTS(Ω) \begin{aligned} HDRF&=\frac{<I(\Omega)>_0}{\frac{1}{\pi}\int_{2\pi-}<I(\Omega')>_0 |\Omega'\cdot n(r_b)|d\Omega'}\\ &=\frac{<I_{bs}(r,\Omega)+\frac{\bar{\rho_{eff}}\bar{T_{bs}}}{1-\bar{R_S}\bar{\rho_{eff}}}I_S(r,\Omega)>}{\frac{1}{\pi}\int_{2\pi-}<I(\Omega')>_0 |\Omega'\cdot n(r_b)|d\Omega'}\\ &=R_{bs}(\Omega)+\frac{\bar{\rho_{eff}}}{1-\bar{R_S}\bar{\rho_{eff}}}t_{bs}T_S(\Omega) \end{aligned} HDRF=π12π<I(Ω)>0Ωn(rb)dΩ<I(Ω)>0=π12π<I(Ω)>0Ωn(rb)dΩ<Ibs(r,Ω)+1RSˉρeffˉρeffˉTbsˉIS(r,Ω)>=Rbs(Ω)+1RSˉρeffˉρeffˉtbsTS(Ω)
Here, transmitance is
tbs=Tbsˉ∫2π−<I(Ω′)>0∣Ω′⋅n(rb)∣dΩ′ t_{bs}=\frac{\bar{T_{bs}}}{\int_{2\pi-}<I(\Omega')>_0 |\Omega'\cdot n(r_b)|d\Omega'} tbs=2π<I(Ω)>0Ωn(rb)dΩTbsˉ
and
Ts=<IS(Ω)>01π∫2π−<db(Ω′)>0∣Ω′⋅n(rb)∣dΩ′ T_s=\frac{<I_S(\Omega)>_0}{\frac{1}{\pi}\int_{2\pi-}<d_b(\Omega')>_0 |\Omega'\cdot n(r_b)|d\Omega'} Ts=π12π<db(Ω)>0Ωn(rb)dΩ<IS(Ω)>0
which is the radiance generated by the isotropic source located at canopy bottom, noting that
∫2π+db(rb,Ω)∣n(rb)⋅Ω∣dΩ=1. \int_{2\pi+}d_b(r_b,\Omega)|n(r_b)\cdot\Omega|d\Omega=1. 2π+db(rb,Ω)n(rb)Ω∣dΩ=1.
So its actually
Ts=<IS(Ω)>0π T_s=<I_S(\Omega)>_0\pi Ts=<IS(Ω)>0π

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值