Decomposition of the Boundary Value Problem for Radiative Transfer Equation of MODIS and MISR instruments
我才发现公式的变化并没有能够带入进来,读者可自己编号。
0.Notions
Let LLL be the straming-collision operator, and SSS is scattering operator:
LI=Ω⋅∇I(r,Ω)+σ(r,Ω)I(r,Ω)S=∫4πσs(r,Ω′,Ω)I(r,Ω′)dΩ′
LI = \Omega\cdot \nabla I(r,\Omega)+\sigma(r,\Omega)I(r,\Omega)\\
S=\int_{4\pi}\sigma_s(r,\Omega',\Omega)I(r,\Omega')d\Omega'
LI=Ω⋅∇I(r,Ω)+σ(r,Ω)I(r,Ω)S=∫4πσs(r,Ω′,Ω)I(r,Ω′)dΩ′
To descirbe reflective properties of boundary δV\delta VδV, the scattering operator defined on the boundary δV\delta VδV for radiation exiting the regine VVV is indroduced as
RI+=1π∫δVdrB′∫n(rB′)⋅Ω′>0ρB(rB′,Ω′;rB,Ω)∣n(rB′)⋅Ω′∣I+(rB′,Ω′)dΩ′
\mathcal{R}I^+=\frac{1}{\pi}\int_{\delta V} dr_B'\int_{n(r_B')\cdot \Omega'>0}\rho_B(r_B',\Omega';r_B,\Omega)|n(r_B')\cdot \Omega'|I^+(r_B',\Omega')d\Omega'
RI+=π1∫δVdrB′∫n(rB′)⋅Ω′>0ρB(rB′,Ω′;rB,Ω)∣n(rB′)⋅Ω′∣I+(rB′,Ω′)dΩ′
Here, we use I+I^+I+ to represent the radiance exiting and I−I^-I− entering domina V. And then, the stationary radiative transfer equation could be expressed as
LI=SI+qI−=RI+qB
LI = SI +q \quad I^-=\mathcal{R}I+q_B
LI=SI+qI−=RI+qB
And if R\mathcal{R}R is 0 and qBq_BqB is 0, the porblem is called standard porblem and the straming-collision oprator would be write as L0L_0L0.
1.Black Soil Problem
The RTE is
LI=SI+qI−=RI+qB.
LI = SI +q \quad I^-=\mathcal{R}I+q_B.
LI=SI+qI−=RI+qB.
As in Green function blog before, we have
I(r,Ω)=Ibs(r,Ω)+Irest(r,Ω)
I(r,\Omega) = I_{bs}(r,\Omega)+I_{rest}(r,\Omega)
I(r,Ω)=Ibs(r,Ω)+Irest(r,Ω)
The first question is black soil problem, means that the bottom of canopy is non-reflecting surface (soil absorption is 1, black soil), so its the solution of
LIbs=SIbsIbs(rt,Ω)=cTδ(Ω,Ω0)+d(rt,Ω)Ibs−(rl,Ω)=0Ibs−(rb,Ω)=0
\begin{aligned}
&LI_{bs}=SI_{bs}\\
&I_{bs}^(r_t,\Omega)=c_T\delta(\Omega,\Omega_0)+d(r_t,\Omega)\\
&I_{bs}^-(r_l,\Omega)=0\\
&I_{bs}^-(r_b,\Omega)=0
\end{aligned}
LIbs=SIbsIbs(rt,Ω)=cTδ(Ω,Ω0)+d(rt,Ω)Ibs−(rl,Ω)=0Ibs−(rb,Ω)=0
Here, we assumte the lateral effects is zero.
2.Canopy-Surface Interation
For notion, we use IrI_rIr for the IrestI_{rest}Irest. We have that
LIr=SIr
LI_r=SI_r
LIr=SIr
and the boundary conditions is
Ir−(rt,Ω)=0Ir−(rl,Ω)=0Ir−(rb,Ω)=RI+
\begin{aligned}
&I_r^-(r_t,\Omega)=0\\
&I_r^-(r_l,\Omega)=0\\
&I_r^-(r_b,\Omega)=\mathcal{R}I^+
\end{aligned}
Ir−(rt,Ω)=0Ir−(rl,Ω)=0Ir−(rb,Ω)=RI+
The solution IrI_rIr of this boundary value problem depend on the solution of “complete tranport problem” I=Ibs+IrI=I_{bs}+I_rI=Ibs+Ir (since RI+\mathcal{R}I^+RI+) is also not known. It need further decompose.
The lower boundary conditions can be rewritten as
Ir−(rb,Ω)=RI+TT
I_r^-(r_b,\Omega)=\frac{\mathcal{R}I^+}{T}T
Ir−(rb,Ω)=TRI+T
Here, TTT is downward radiation flux density at canopy bottom, i.e.,
T(rb)=∫n(rb)⋅Ω′>0I(rb,Ω′)∣Ω′⋅n(rb)∣dΩ′, rb∈δV
T(r_b)=\int_{n(r_b)\cdot\Omega'>0}I(r_b,\Omega')|\Omega'\cdot n(r_b)|d\Omega', \ \ r_b\in\delta V
T(rb)=∫n(rb)⋅Ω′>0I(rb,Ω′)∣Ω′⋅n(rb)∣dΩ′, rb∈δV
The ratio RI+T\frac{\mathcal{R}I^+}{T}TRI+ is a factor of π\piπ smaller than HDRF (since there is no 1/π1/\pi1/π in the dominator compared to HDRF).
And then ground BHR could be writen as
ρeff(rb)=∫n(rb)⋅Ω′>0∫n(rb)⋅Ω<0∣n(rb)⋅Ω′∣π−1ρb(rb,Ω′,Ω)∣Ω⋅n(rb)∣I(rb,Ω′)dΩ′dΩ∫n(rb)⋅Ω′>0∣Ω′⋅n(rb)∣I(rb,Ω′)dΩ′
\rho_{eff}(r_b)=\frac{\int_{n(r_b)\cdot\Omega'>0}\int_{n(r_b)\cdot\Omega<0}|n(r_b)\cdot\Omega'|\pi^{-1}\rho_b(r_b,\Omega',\Omega)|\Omega\cdot n(r_b)|I(r_b,\Omega')d\Omega'd\Omega}{\int_{n(r_b)\cdot\Omega'>0}|\Omega'\cdot n(r_b)|I(r_b,\Omega')d\Omega'}
ρeff(rb)=∫n(rb)⋅Ω′>0∣Ω′⋅n(rb)∣I(rb,Ω′)dΩ′∫n(rb)⋅Ω′>0∫n(rb)⋅Ω<0∣n(rb)⋅Ω′∣π−1ρb(rb,Ω′,Ω)∣Ω⋅n(rb)∣I(rb,Ω′)dΩ′dΩ
Here, ρb\rho_bρb is the BRF of canopy ground. So we could find that the denomator is actually the TTT, which means that ρeff=somethingT\rho_{eff}=\frac{something}{T}ρeff=Tsomething.
For horizontally inhomogeneous vegetation canopy, TTT vary a lot, but BHR would not so.
Now, we introduce the effective ground anisotropy:
db(rb,Ω)=RI+Tρeff=1ρeff⋅∫2π+ρb(rb,Ω′,Ω)∣n(rb)⋅Ω′∣I(rb,Ω′)dΩ′π∫2π−∣Ω′⋅n(rb)∣I(rb,Ω′)dΩ′
\begin{aligned}
d_b(r_b,\Omega)&=\frac{\mathcal{R}I^+}{T\rho_{eff}}\\
&=\frac{1}{\rho_{eff}}\cdot\frac{\int_{2\pi+}\rho_b(r_b,\Omega',\Omega)|n(r_b)\cdot\Omega'|I(r_b,\Omega')d\Omega'}{\pi\int_{2\pi-}|\Omega'\cdot n(r_b)|I(r_b,\Omega')d\Omega'}
\end{aligned}
db(rb,Ω)=TρeffRI+=ρeff1⋅π∫2π−∣Ω′⋅n(rb)∣I(rb,Ω′)dΩ′∫2π+ρb(rb,Ω′,Ω)∣n(rb)⋅Ω′∣I(rb,Ω′)dΩ′
This value seems strange. But if we use ρeff=somethingT\rho_{eff}=\frac{something}{T}ρeff=Tsomething, we could find that this is actually tha ratio of reflected flux density and radiance. So its cosine-weighted intergral over upward directions is unity:
∫2π+db(rb,Ω)∣n(rb)⋅Ω∣dΩ=1.
\int_{2\pi+}d_b(r_b,\Omega)|n(r_b)\cdot\Omega|d\Omega=1.
∫2π+db(rb,Ω)∣n(rb)⋅Ω∣dΩ=1.
So this term descibed the inhomogenous of the surface., its something with denonimator a flux density and numenator is reflected radiance with some direction.
By using the Equation (12), we obtain
Ir−(rb,Ω)=RI+=ρeffT(rb)db(rb,Ω)
I_r^-(r_b,\Omega)=\mathcal{R}I^+=\rho_{eff}T(r_b)d_b(r_b,\Omega)
Ir−(rb,Ω)=RI+=ρeffT(rb)db(rb,Ω)
Using Green function method with q=Ir−q=I_r^-q=Ir−, we obtain
Ir(r,Ω)=∫δVdrb′∫n(rb′)⋅Ω′<0dΩ′GS(r,Ω;rb′,Ω′)ρeff(rb′)db(rb′,Ω′)T(rb′)
I_r(r,\Omega)=\int_{\delta V}dr_b'\int_{n(r_b')\cdot\Omega'<0}d\Omega'G_S(r,\Omega;r_b',\Omega')\rho_{eff}(r_b')d_b(r_b',\Omega')T(r_b')
Ir(r,Ω)=∫δVdrb′∫n(rb′)⋅Ω′<0dΩ′GS(r,Ω;rb′,Ω′)ρeff(rb′)db(rb′,Ω′)T(rb′)
Substituing this into Equation (5) we get that
I(r,Ω)=Ibs(r,Ω)+∫δVbdrb′ρeff(rb′)T(rb′)J(r,Ω;rb′)
I(r,\Omega)=I_{bs}(r,\Omega)+\int_{\delta V_b}dr_b'\rho_{eff}(r_b')T(r_b')J(r,\Omega;r_b')
I(r,Ω)=Ibs(r,Ω)+∫δVbdrb′ρeff(rb′)T(rb′)J(r,Ω;rb′)
where
J(r,Ω;rb′)=∫n(rb′)⋅Ω′<0dΩ′GS(r,Ω;r′,Ω′)db(rb′,Ω′)
J(r,\Omega;r_b')=\int_{n(r_b')\cdot\Omega'<0}d\Omega'G_S(r,\Omega;r',\Omega')d_b(r_b',\Omega')
J(r,Ω;rb′)=∫n(rb′)⋅Ω′<0dΩ′GS(r,Ω;r′,Ω′)db(rb′,Ω′)
By the theory of Green function, JJJ is the intensity of radiation field at r with derection Ω\OmegaΩ generated by a point anisotropic source db(rb′,Ω′)δ(rb,rb′)d_b(r_b',\Omega')\delta(r_b,r_b')db(rb′,Ω′)δ(rb,rb′) located at rb′r_b'rb′.
With T(rb)=∫n(rb)⋅Ω′>0I(rb,Ω′)∣Ω′⋅n(rb)∣dΩ′T(r_b)=\int_{n(r_b)\cdot\Omega'>0}I(r_b,\Omega')|\Omega'\cdot n(r_b)|d\Omega'T(rb)=∫n(rb)⋅Ω′>0I(rb,Ω′)∣Ω′⋅n(rb)∣dΩ′ and (16), (17), we obtain
T(rb)=∫n(rb)⋅Ω′>0(Ibs(rb,Ω′)+∫δVdrb′ρeff(rb′)T(rb′)J(rb,Ω′;rb′))∣Ω′⋅n(rb)∣dΩ′
\begin{aligned}
T(r_b)=&\int_{n(r_b)\cdot\Omega'>0}(I_{bs}(r_b,\Omega') \\&+\int_{\delta V}dr_b'\rho_{eff}(r_b')T(r_b')J(r_b,\Omega';r_b'))|\Omega'\cdot n(r_b)|d\Omega'
\end{aligned}
T(rb)=∫n(rb)⋅Ω′>0(Ibs(rb,Ω′)+∫δVdrb′ρeff(rb′)T(rb′)J(rb,Ω′;rb′))∣Ω′⋅n(rb)∣dΩ′
By letting
Tbs=∫n(rb)⋅Ω′>0Ibs(rb,Ω)∣Ω′⋅n(rb)∣dΩ′
T_{bs}=\int_{n(r_b)\cdot\Omega'>0}I_{bs}(r_b,\Omega)|\Omega'\cdot n(r_b)|d\Omega'
Tbs=∫n(rb)⋅Ω′>0Ibs(rb,Ω)∣Ω′⋅n(rb)∣dΩ′
and
Gd(rb,rb′)=∫n(rb)⋅Ω′>0dΩ′J(rb,Ω′;rb′)∣Ω′⋅n(rb′)∣=∫n(rb)⋅Ω′>0∣Ω′⋅n(rb′)∣dΩ′∫n(rb′)⋅Ω′<0dΩ′GS(r,Ω;r′,Ω′)db(rb′,Ω′)
\begin{aligned}
G_d(r_b,r_b')&= \int_{n(r_b)\cdot\Omega'>0}d\Omega'J(r_b,\Omega';r_b')|\Omega'\cdot n(r_b')|\\
&=\int_{n(r_b)\cdot\Omega'>0}|\Omega'\cdot n(r_b')|d\Omega'\int_{n(r_b')\cdot\Omega'<0}d\Omega'G_S(r,\Omega;r',\Omega')d_b(r_b',\Omega')
\end{aligned}
Gd(rb,rb′)=∫n(rb)⋅Ω′>0dΩ′J(rb,Ω′;rb′)∣Ω′⋅n(rb′)∣=∫n(rb)⋅Ω′>0∣Ω′⋅n(rb′)∣dΩ′∫n(rb′)⋅Ω′<0dΩ′GS(r,Ω;r′,Ω′)db(rb′,Ω′)
Noting that GdG_dGd is downward radiation flux density at rbr_brb due to point anisotropic source db(rb,Ω′)δ(rb,rb′)d_b(r_b,\Omega')\delta (r_b,r_b')db(rb,Ω′)δ(rb,rb′).
The (18) becomes
T(rb)=Tbs+∫δVGd(r,r′)ρeff(rb′)T(rb′)drb′
T(r_b)=T_{bs} + \int_{\delta V}G_d(r,r')\rho_{eff}(r_b')T(r_b') dr_b'
T(rb)=Tbs+∫δVGd(r,r′)ρeff(rb′)T(rb′)drb′
Since the JJJ is the radiance generated by db(rb′,Ω′)δ(rb,rb′)d_b(r_b',\Omega')\delta(r_b,r_b')db(rb′,Ω′)δ(rb,rb′), so GdG_dGd is actually the flux density generated also by it.
Now, we note that
IS(r,Ω)=∫δVdrb′J(r,Ω;rb′)=∫δVdrb′∫n(rb′)⋅Ω′<0dΩ′GS(r,Ω;r′,Ω′)db(rb′,Ω′)
\begin{aligned}
I_S(r,\Omega) &=\int_{\delta V}dr_b' J(r,\Omega;r_b')\\
&=\int_{\delta V}dr_b'\int_{n(r_b')\cdot\Omega'<0}d\Omega'G_S(r,\Omega;r',\Omega')d_b(r_b',\Omega')
\end{aligned}
IS(r,Ω)=∫δVdrb′J(r,Ω;rb′)=∫δVdrb′∫n(rb′)⋅Ω′<0dΩ′GS(r,Ω;r′,Ω′)db(rb′,Ω′)
is the intensity of radiation field in canopy generated by anisotropic and heterogeneoussource source dbd_bdb located at canopy bottom. It satiesfy the equation
LIS=SIS
LI_S=SI_S
LIS=SIS
and boundary condtions IS−(rt,Ω)=0I_S^-(r_t,\Omega)=0IS−(rt,Ω)=0, IS−(rl,Ω)=0I_S^-(r_l,\Omega)=0IS−(rl,Ω)=0 and I−(rb,Ω)=db(rb,Ω)I^-(r_b,\Omega)=d_b(r_b,\Omega)I−(rb,Ω)=db(rb,Ω).
This is the second “basic problem”, “S problem”. It follows that
∫δVGd(r,rb′)drb′=∫n(rb)⋅Ω>0IS(rb,Ω)∣Ω⋅n(rb)∣dΩ
\int_{\delta_V}G_d(r,r_b')dr_b'=\int_{n(r_b)\cdot\Omega>0}I_S(r_b,\Omega)|\Omega\cdot n(r_b)|d\Omega
∫δVGd(r,rb′)drb′=∫n(rb)⋅Ω>0IS(rb,Ω)∣Ω⋅n(rb)∣dΩ
The integral of GdG_dGd over boundary is downward flux at rbr_brb which acount for contribution from all anisotropic sources at canopy bottom.
Rethinking the equation (16), the J is actually a weight to weight the all reflected flux density.
The ground BHR (Equation (11)) and the effective ground anisotropy is independent on vegetation canopy and are known.
Once GdG_dGd is given, one can solve Equation (18) and substitude it into (15).
Solution of horizontally homogeneous vegetation canopy with Lambertian surface
If we assume that the gournd BRF is homegeneous Lambertian surface, then, TbsT_{bs}Tbs and T is independent to (x,y) . And gournd BHR become
ρeff=∫n(rb)⋅Ω′>0∫n(rb)⋅Ω<0∣n(rb)⋅Ω′∣π−1ρb(rb,Ω′,Ω)∣Ω⋅n(rb)∣I(rb,Ω′)dΩ′dΩ∫n(rb)⋅Ω′>0∣Ω′⋅n(rb)∣I(rb,Ω′)dΩ′=ρb∫n(rb)⋅Ω<0dΩ∣Ω⋅n(rb)∣π=ρb
\begin{aligned}
\rho_{eff}&=\frac{\int_{n(r_b)\cdot\Omega'>0}\int_{n(r_b)\cdot\Omega<0}|n(r_b)\cdot\Omega'|\pi^{-1}\rho_b(r_b,\Omega',\Omega)|\Omega\cdot n(r_b)|I(r_b,\Omega')d\Omega'd\Omega}{\int_{n(r_b)\cdot\Omega'>0}|\Omega'\cdot n(r_b)|I(r_b,\Omega')d\Omega'}\\
&=\frac{\rho_b\int_{n(r_b)\cdot\Omega<0}d\Omega|\Omega\cdot n(r_b)|}{\pi}\\
&=\rho_b
\end{aligned}
ρeff=∫n(rb)⋅Ω′>0∣Ω′⋅n(rb)∣I(rb,Ω′)dΩ′∫n(rb)⋅Ω′>0∫n(rb)⋅Ω<0∣n(rb)⋅Ω′∣π−1ρb(rb,Ω′,Ω)∣Ω⋅n(rb)∣I(rb,Ω′)dΩ′dΩ=πρb∫n(rb)⋅Ω<0dΩ∣Ω⋅n(rb)∣=ρb
and effective ground anisotropy is
db(rb,Ω)=RI+Tρeff=1ρeff⋅∫2π+ρb(rb,Ω′,Ω)∣n(rb)⋅Ω′∣I(rb,Ω′)dΩ′π∫2π−∣Ω′⋅n(rb)∣I(rb,Ω′)dΩ′=ρbρeffπ=1π
\begin{aligned}
d_b(r_b,\Omega)&=\frac{\mathcal{R}I^+}{T\rho_{eff}}\\
&=\frac{1}{\rho_{eff}}\cdot\frac{\int_{2\pi+}\rho_b(r_b,\Omega',\Omega)|n(r_b)\cdot\Omega'|I(r_b,\Omega')d\Omega'}{\pi\int_{2\pi-}|\Omega'\cdot n(r_b)|I(r_b,\Omega')d\Omega'}\\
&=\frac{\rho_b}{\rho_{eff}\pi}=\frac{1}{\pi}
\end{aligned}
db(rb,Ω)=TρeffRI+=ρeff1⋅π∫2π−∣Ω′⋅n(rb)∣I(rb,Ω′)dΩ′∫2π+ρb(rb,Ω′,Ω)∣n(rb)⋅Ω′∣I(rb,Ω′)dΩ′=ρeffπρb=π1
Then the Equation (21) become
T=Tbs+∫δVGd(rb,rb′)ρeffTdrb′=Tbs+ρbT∫δVGd(rb,rb′)drb′→T(1−ρbTRS)=Tbs→T=Tbs1−ρbRs
\begin{aligned}
T &=T_{bs} + \int_{\delta V}G_d(r_b,r_b')\rho_{eff}T dr_b'\\
&= T_{bs} + \rho_bT\int_{\delta V}G_d(r_b,r_b')dr_b'\\
&\rightarrow T(1-\rho_bTR_S)=T_{bs}\\
&\rightarrow T=\frac{T_{bs}}{1-\rho_bR_s}
\end{aligned}
T=Tbs+∫δVGd(rb,rb′)ρeffTdrb′=Tbs+ρbT∫δVGd(rb,rb′)drb′→T(1−ρbTRS)=Tbs→T=1−ρbRsTbs
where
RS=∫δVGd(rb,rb′)drb′
R_S=\int_{\delta V}G_d(r_b,r_b')dr_b'
RS=∫δVGd(rb,rb′)drb′
is the downward flux density at rbr_brb generated by source 1π\frac{1}{\pi}π1 (since dbd_bdb has become 1/π1/\pi1/π and combine the Equation (24) and (23)).
Substituting Eq. (22) into Eq. (16), we obtain:
I(r,Ω)=Ibs(r,Ω)+IS(r,Ω)ρeffT
I(r,\Omega)=I_{bs}(r,\Omega)+I_S(r,\Omega)\rho_{eff}T
I(r,Ω)=Ibs(r,Ω)+IS(r,Ω)ρeffT
Using ρeff=ρb\rho_{eff}=\rho_bρeff=ρb, Then, by Eq.(27), we obtain:
I(r,Ω)=Ibs(r,Ω)+Tbsρb1−ρbRSIS(r,Ω)
I(r,\Omega)=I_{bs}(r,\Omega)+\frac{T_{bs}\rho_{b}}{1-\rho_bR_S}I_S(r,\Omega)
I(r,Ω)=Ibs(r,Ω)+1−ρbRSTbsρbIS(r,Ω)
So, the solution of original boundary problem is decomposed into the solution of black-soil problem and S problem.
Solution of horizontally inhomogeneous vegetation canopy
In this case, the solution of Eq. (21) is not directly Eq. (27), and approximation is performed. Consider the ratio
RS(rb)=∫δVGd(rb,rb′)ρeff(rb′)T(rb′)drb′ρeff(rb′)T(rb′)
R_S(r_b)=\frac{\int_{\delta V}G_d(r_b,r_b')\rho_{eff}(r_b')T(r_b')dr_b'}{\rho_{eff}(r_b')T(r_b')}
RS(rb)=ρeff(rb′)T(rb′)∫δVGd(rb,rb′)ρeff(rb′)T(rb′)drb′
which is BHR calculated for canopy illuminated by anisotropic sources ρeff(rb′)T(rb′)db(rb′,Ω′)\rho_{eff}(r_b')T(r_b')d_b(r_b',\Omega')ρeff(rb′)T(rb′)db(rb′,Ω′) from below. To understand this, we could think that the numerator is the responsed flux density at rbr_brb due to radiance ρeff(rb′)T(rb′)db(rb′,Ω′)\rho_{eff}(r_b')T(r_b')d_b(r_b',\Omega')ρeff(rb′)T(rb′)db(rb′,Ω′) by Eq. (24), and the denomator is
∫n(rb′)⋅Ω′<0ρeff(rb′)T(rb′)d(rb′Ω′)∣n(rb′)⋅Ω′∣dΩ′
\int_{n(r_b')\cdot\Omega'<0}\rho_{eff}(r_b')T(r_b')d(r_b'\Omega')|n(r_b')\cdot\Omega'|d\Omega'
∫n(rb′)⋅Ω′<0ρeff(rb′)T(rb′)d(rb′Ω′)∣n(rb′)⋅Ω′∣dΩ′
which is equal to ρeff(rb′)T(rb′)\rho_{eff}(r_b')T(r_b')ρeff(rb′)T(rb′).
Since the T varies, so the RsR_sRs varies. But linear operator theory has the conclusion that a continous positive linear operator BBB minimum mnm_nmn and maximum MnM_nMn values of the function ηn=(Bnu)1/n\eta_n=(\sqrt{B^nu})^{1/n}ηn=(Bnu)1/n converge to mazimum eigenvalue ρ(B)\rho(B)ρ(B) for any chosen positive function uuu as n tend to infinity.
Here, the numerator in Eq. (35) can be treated as a positive intergral operator BBB with a kernel GdG_dGd. We have n=1n=1n=1, and we use the maximum eigenvalue RSˉ\bar{R_S}RSˉ of BBB with kernel GdG_dGd.
Then , we rewrite the Eq. (25) as
T(rb)=Tbs(rb)+RSˉρeff(rb)T(rb).
T(r_b)=T_{bs}(r_b)+\bar{R_S}\rho_{eff}(r_b)T(r_b).
T(rb)=Tbs(rb)+RSˉρeff(rb)T(rb).
Then we have
T(rb)=Tbs(rb)1−RSˉρeff(rb)
T(r_b)=\frac{T_{bs}(r_b)}{1-\bar{R_S}\rho_{eff}(r_b)}
T(rb)=1−RSˉρeff(rb)Tbs(rb)
Substitude this into Eq. (16), we obtain
I(r,Ω)=Ibs(r,Ω)+∫δVdrb′J(rb′;rb′,Ω′)ρeff(rb′)Tbs(rb′)1−RSˉρeff(rb′)
I(r,\Omega)=I_{bs}(r,\Omega)+\int_{\delta_V}dr_b'J(r_b';r_b',\Omega')\rho_{eff}(r_b')\frac{T_{bs}(r_b')}{1-\bar{R_S}\rho_{eff}(r_b')}
I(r,Ω)=Ibs(r,Ω)+∫δVdrb′J(rb′;rb′,Ω′)ρeff(rb′)1−RSˉρeff(rb′)Tbs(rb′)
where J has already mentioned below as
J(r,Ω;rb′)=∫n(rb′)⋅Ω′<0dΩ′GS(r,Ω;r′,Ω′)db(rb′,Ω′)
J(r,\Omega;r_b')=\int_{n(r_b')\cdot\Omega'<0}d\Omega'G_S(r,\Omega;r',\Omega')d_b(r_b',\Omega')
J(r,Ω;rb′)=∫n(rb′)⋅Ω′<0dΩ′GS(r,Ω;r′,Ω′)db(rb′,Ω′)
For futher simlification, we replace the JJJ with its mean value over the canopy bottom, then this becomes
I(r,Ω)=Ibs(r,Ω)+∫δVdrb′J(rb′;rb′,Ω′)ρeffˉTbsˉ1−RSˉρeffˉ
I(r,\Omega)=I_{bs}(r,\Omega)+\int_{\delta_V}dr_b'J(r_b';r_b',\Omega')\frac{\bar{\rho_{eff}}\bar{T_{bs}}}{1-\bar{R_S}\bar{\rho_{eff}}}
I(r,Ω)=Ibs(r,Ω)+∫δVdrb′J(rb′;rb′,Ω′)1−RSˉρeffˉρeffˉTbsˉ
Then the integral of JJJ is ISI_SIS by Eq. (22), then we have
I(r,Ω)=Ibs(r,Ω)+ρeffˉTbsˉ1−RSˉρeffˉIS(r,Ω)
I(r,\Omega)=I_{bs}(r,\Omega)+\frac{\bar{\rho_{eff}}\bar{T_{bs}}}{1-\bar{R_S}\bar{\rho_{eff}}}I_S(r,\Omega)
I(r,Ω)=Ibs(r,Ω)+1−RSˉρeffˉρeffˉTbsˉIS(r,Ω)
Then, the results of original boundary problem become the solution of black soil problem and S problem.
Now, we could rewrite the HDRF of the surface :
HDRF=<I(Ω)>01π∫2π−<I(Ω′)>0∣Ω′⋅n(rb)∣dΩ′=<Ibs(r,Ω)+ρeffˉTbsˉ1−RSˉρeffˉIS(r,Ω)>1π∫2π−<I(Ω′)>0∣Ω′⋅n(rb)∣dΩ′=Rbs(Ω)+ρeffˉ1−RSˉρeffˉtbsTS(Ω)
\begin{aligned}
HDRF&=\frac{<I(\Omega)>_0}{\frac{1}{\pi}\int_{2\pi-}<I(\Omega')>_0 |\Omega'\cdot n(r_b)|d\Omega'}\\
&=\frac{<I_{bs}(r,\Omega)+\frac{\bar{\rho_{eff}}\bar{T_{bs}}}{1-\bar{R_S}\bar{\rho_{eff}}}I_S(r,\Omega)>}{\frac{1}{\pi}\int_{2\pi-}<I(\Omega')>_0 |\Omega'\cdot n(r_b)|d\Omega'}\\
&=R_{bs}(\Omega)+\frac{\bar{\rho_{eff}}}{1-\bar{R_S}\bar{\rho_{eff}}}t_{bs}T_S(\Omega)
\end{aligned}
HDRF=π1∫2π−<I(Ω′)>0∣Ω′⋅n(rb)∣dΩ′<I(Ω)>0=π1∫2π−<I(Ω′)>0∣Ω′⋅n(rb)∣dΩ′<Ibs(r,Ω)+1−RSˉρeffˉρeffˉTbsˉIS(r,Ω)>=Rbs(Ω)+1−RSˉρeffˉρeffˉtbsTS(Ω)
Here, transmitance is
tbs=Tbsˉ∫2π−<I(Ω′)>0∣Ω′⋅n(rb)∣dΩ′
t_{bs}=\frac{\bar{T_{bs}}}{\int_{2\pi-}<I(\Omega')>_0 |\Omega'\cdot n(r_b)|d\Omega'}
tbs=∫2π−<I(Ω′)>0∣Ω′⋅n(rb)∣dΩ′Tbsˉ
and
Ts=<IS(Ω)>01π∫2π−<db(Ω′)>0∣Ω′⋅n(rb)∣dΩ′
T_s=\frac{<I_S(\Omega)>_0}{\frac{1}{\pi}\int_{2\pi-}<d_b(\Omega')>_0 |\Omega'\cdot n(r_b)|d\Omega'}
Ts=π1∫2π−<db(Ω′)>0∣Ω′⋅n(rb)∣dΩ′<IS(Ω)>0
which is the radiance generated by the isotropic source located at canopy bottom, noting that
∫2π+db(rb,Ω)∣n(rb)⋅Ω∣dΩ=1.
\int_{2\pi+}d_b(r_b,\Omega)|n(r_b)\cdot\Omega|d\Omega=1.
∫2π+db(rb,Ω)∣n(rb)⋅Ω∣dΩ=1.
So its actually
Ts=<IS(Ω)>0π
T_s=<I_S(\Omega)>_0\pi
Ts=<IS(Ω)>0π