冠层辐射传输方程的边界条件

Boundary Conditions of Canopy Radiative Transfer Equation

在这里插入图片描述

Introduction

The stationary radiative transfer equation for a vegetation canopy in the domain V is
Ω⋅∇I(r,Ω)+G(r,Ω)uL(r)I(r,Ω)=uL(r)π∫4πΓ(r,Ω′,Ω)I(r,Ω′)dΩ′ \begin{aligned} \Omega\cdot \nabla I(r,\Omega)&+G(r,\Omega)u_L(r)I(r,\Omega)=\\ &\frac{u_L(r)}{\pi}\int_{4\pi}\Gamma(r,\Omega',\Omega)I(r,\Omega')d\Omega' \end{aligned} ΩI(r,Ω)+G(r,Ω)uL(r)I(r,Ω)=πuL(r)4πΓ(r,Ω,Ω)I(r,Ω)dΩ
with the boundary condition
I(rb,Ω)=B(rb,Ω),  rb∈δV,n(rb)⋅Ω<0 I(r_b,\Omega)=B(r_b,\Omega), \ \ r_b\in\delta V, n(r_b)\cdot\Omega <0 I(rb,Ω)=B(rb,Ω),  rbδV,n(rb)Ω<0
Given the BRF R0(Ω′,Ω)R_0(\Omega', \Omega)R0(Ω,Ω), incident radiance at point rtr_trt, I(rt,Ω′)I(r_t,\Omega')I(rt,Ω), then the intensity of reflected radiation I(rt,Ω)I(r_t,\Omega)I(rt,Ω) is
I(rt,Ω)=∫2π−R0(Ω′,Ω)π∣μ′∣I(rt,Ω′)dΩ′ I(r_t,\Omega)=\int_{2\pi-}\frac{R_0(\Omega',\Omega)}{\pi}|\mu'|I(r_t,\Omega')d\Omega' I(rt,Ω)=2ππR0(Ω,Ω)μI(rt,Ω)dΩ
To understand this equation, we view the term ∣μ′∣I(rt,Ω′)dΩ|\mu'|I(r_t,\Omega')d\OmegaμI(rt,Ω)dΩ as the unit flux density, and then R0(Ω′,Ω)π\frac{R_0(\Omega',\Omega)}{\pi}πR0(Ω,Ω) is actually the BRDF, then R0(Ω′,Ω)π∣μ′∣I(rt,Ω′)dΩ′\frac{R_0(\Omega',\Omega)}{\pi}|\mu'|I(r_t,\Omega')d\Omega'πR0(Ω,Ω)μI(rt,Ω)dΩ means the radiance leaving with unit incident radiance from dΩ′d\Omega'dΩ. After that, integral means sum the radiance from all directions.

Boundary Conditions

There are three boundary of the conopy, top δVt\delta V_tδVt, the bottom δVb\delta V_bδVb and the lateral δVl\delta V_lδVl. The general form of boundary condtions is
I(rb,Ω)=∫δV∫Ω′⋅n(rb′)>0ρ(rb′,Ω′;rb,Ω)∣n(rb′)⋅Ω′∣I(rb′,Ω′)dΩ′drb′+q(rb,Ω),  n(rb)⋅Ω<0 \begin{aligned} &I(r_b,\Omega)=\\&\int_{\delta V}\int_{\Omega'\cdot n(r_b')>0}\rho(r_b',\Omega';r_b,\Omega)|n(r_b')\cdot\Omega'|I(r_b',\Omega')d\Omega' dr_b'\\ &+ q(r_b,\Omega), \ \ n(r_b)\cdot \Omega <0 \end{aligned} I(rb,Ω)=δVΩn(rb)>0ρ(rb,Ω;rb,Ω)n(rb)ΩI(rb,Ω)dΩdrb+q(rb,Ω),  n(rb)Ω<0
rbr_brb nad rb′r_b'rb are points on the conopy boundary δV\delta VδV, n(rb)n(r_b)n(rb) is outward normal at point rbr_brb, and ρ\rhoρ is boundary scattering function (similar to BRF), means the probability density that a photon escaped from rb′r_b'rb in direction Ω′\Omega'Ω will come back to it through rbr_brb with direction Ω\OmegaΩ. qqq is a photon source.

The Ω′⋅n(rb′)\Omega'\cdot n(r_b')Ωn(rb) means photon escape from δV\delta VδV, and n(rb)⋅Ω<0n(r_b)\cdot\Omega <0n(rb)Ω<0 means the photon enter δV\delta VδV.

1. Upper Boundart

The boundary condtion at δVt\delta V_tδVt is
I(rt,Ω)=cT(rt)δ(Ω,Ω0)+d(rt,Ω), rt∈δVt, μ<0. I(r_t,\Omega)=c_T(r_t)\delta(\Omega,\Omega_0)+d(r_t,\Omega), \ r_t\in\delta V_t,\ \mu<0. I(rt,Ω)=cT(rt)δ(Ω,Ω0)+d(rt,Ω), rtδVt, μ<0.
Here, cTc_TcT is intensities of solar beam and diffuse radiation at rtr_trt. The condtion, μ<0\mu < 0μ<0, which is equivelent to n(rt)⋅Ω<0n(r_t)\cdot\Omega <0n(rt)Ω<0, means this is the incoming directions. With Equation (4), this means ρ=0\rho=0ρ=0 and q(rb,Ω)=cT(rt)δ(Ω,Ω0)+d(rt,Ω)q(r_b,\Omega)=c_T(r_t)\delta(\Omega,\Omega_0)+d(r_t,\Omega)q(rb,Ω)=cT(rt)δ(Ω,Ω0)+d(rt,Ω).

How to determine the ccc and ddd? We define the ratio fdirf_{dir}fdir of the mono-drectional to the total radiantion flux density ont the canopy:
fdir(rt)=Fdir↓(rt)Fdir↓(rt)+Fdif↓(rt),rt∈δVt f_{dir}(r_t)=\frac{F_{dir}^{\downarrow}(r_t)}{F_{dir}^{\downarrow}(r_t)+F_{dif}^{\downarrow}(r_t)}, \quad r_t\in\delta V_t fdir(rt)=Fdir(rt)+Fdif(rt)Fdir(rt),rtδVt
Here, Fdir↓(rt)F_{dir}^{\downarrow}(r_t)Fdir(rt) and Fdif↓(rt)F_{dif}^{\downarrow}(r_t)Fdif(rt) is flux density of mono-direction and diffuse components of incident radiation, i.e.,
Fdir↓(rt)=cT∣μ0∣,Fdif↓(rt)=∫2π−d(rt,Ω)∣Ω⋅n(rt)∣dΩ F_{dir}^{\downarrow}(r_t)=c_T|\mu_0|, \quad F_{dif}^{\downarrow}(r_t)=\int_{2\pi-}d(r_t,\Omega)|\Omega\cdot n(r_t)|d\Omega Fdir(rt)=cTμ0,Fdif(rt)=2πd(rt,Ω)∣Ωn(rt)dΩ
The μ0=cosθ0\mu_0=cos\theta_0μ0=cosθ0. And naturely we have F↓(rt)=Fdir↓(rt)+Fdif↓(rt)F^{\downarrow}(r_t)=F_{dir}^{\downarrow}(r_t) + F_{dif}^{\downarrow}(r_t)F(rt)=Fdir(rt)+Fdif(rt). The quantaty fdirf_{dir}fdir and F↓F^{\downarrow}F could be derived from satellite data. Then, using these notions, we get
I(rt,Ω)=[fdir∣μ0∣δ(Ω,Ω0)+(1−fdir)do(rt,Ω)]F↓,n(rt)⋅Ω<0 I(r_t,\Omega)=[\frac{f_{dir}}{|\mu_0|}\delta(\Omega,\Omega_0)+(1-f_{dir})d_o(r_t,\Omega)]F^{\downarrow}, n(r_t)\cdot\Omega<0 I(rt,Ω)=[μ0fdirδ(Ω,Ω0)+(1fdir)do(rt,Ω)]F,n(rt)Ω<0
Here, d0(rt,Ω)=d(rt,Ω)Fdif↓d_0(r_t,\Omega)=\frac{d(r_t,\Omega)}{F_{dif}^{\downarrow}}d0(rt,Ω)=Fdifd(rt,Ω).

2. Conopy lower bound

The reflective properties of canopy lower boundary is approximated as
ρ(rb′,Ω′;rb,Ω)=ρb(rb′,Ω′,Ω)δ(rb,rb′) \rho(r_b',\Omega';r_b,\Omega)=\rho_b(r_b',\Omega',\Omega)\delta(r_b,r_b') ρ(rb,Ω;rb,Ω)=ρb(rb,Ω,Ω)δ(rb,rb)
Here, ρb\rho_bρb is the BRF of canopy ground. Then we get that
I(rb,Ω)=1π∫2π−ρb(rb,Ω′,Ω)∣n(rb)⋅Ω′∣I(rb,Ω′)dΩ′, μ>0 I(r_b,\Omega)=\frac{1}{\pi}\int_{2\pi-}\rho_b(r_b,\Omega',\Omega)|n(r_b)\cdot\Omega'|I(r_b,\Omega')d\Omega', \ \mu >0 I(rb,Ω)=π12πρb(rb,Ω,Ω)n(rb)ΩI(rb,Ω)dΩ, μ>0

3. Lateral Boundary contition

This could be assumted to 0 when radiation regime is large.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值