互信息的不变性
有几天没写啥东西了,更一个。
Theorem.1 令I(X,Y)I(X,Y)I(X,Y)为XXX和YYY之间的互信息。令U=F(X),V=G(Y)U=F(X),V=G(Y)U=F(X),V=G(Y),其中,U,V,X,YU,V,X,YU,V,X,Y都是随机向量,F,VF,VF,V是光滑且可逆的映射。则I(U,V)=I(X,Y)I(U,V)=I(X,Y)I(U,V)=I(X,Y).
证明:
变换的雅可比行列式为JU=∣∂U∂X∣J_U=|\frac{\partial U}{\partial X}|JU=∣∂X∂U∣和JU=∣∂V∂Y∣J_U=|\frac{\partial V}{\partial Y}|JU=∣∂Y∂V∣,则有:
fU,V(u,v)JU(x)JV(y)=fX,Y(x,y)du=JUdx dv=JvdyfU(u)JU(x)=fX(x)fV(v)JV(y)=fY(y)
f_{U,V}(u,v)J_U(x)J_V(y)=f_{X,Y}(x,y)\\
du=J_U dx \ dv = J_vdy\\
f_U(u)J_U(x)=f_X(x)\\
f_V(v)J_V(y)=f_Y(y)
fU,V(u,v)JU(x)JV(y)=fX,Y(x,y)du=JUdx dv=JvdyfU(u)JU(x)=fX(x)fV(v)JV(y)=fY(y)
I(U,V)=∫∫fU,V(u,v)log(fU,V(u,v)fU(u)fV(v))dudv=∫∫fX,Y(x,y)JUJVlog(fX,Y(x,y)JUJVfX(x)fY(y)JUJV)JUdxJVdy=∫∫fX,Y(x,y)log(fX,Y(x,y)fX(x)fY(y))dxdy=I(X,Y) \begin{aligned} I(U,V) &= \int\int f_{U,V}(u,v)log(\frac{f_{U,V}(u,v)}{f_U(u)f_V(v)})dudv\\ &= \int\int\frac{f_{X,Y}(x,y)}{J_UJ_V}log(\frac{\frac{f_{X,Y}(x,y)}{J_UJ_V}}{\frac{f_{X}(x)f_Y(y)}{J_UJ_V}})J_UdxJ_Vdy\\ &=\int\int f_{X,Y}(x,y)log(\frac{f_{X,Y}(x,y)}{f_{X}(x)f_Y(y)})dxdy\\ &=I(X,Y) \end{aligned} I(U,V)=∫∫fU,V(u,v)log(fU(u)fV(v)fU,V(u,v))dudv=∫∫JUJVfX,Y(x,y)log(JUJVfX(x)fY(y)JUJVfX,Y(x,y))JUdxJVdy=∫∫fX,Y(x,y)log(fX(x)fY(y)fX,Y(x,y))dxdy=I(X,Y)
因此,对任意随机变量做满足上述要求的变换,其互信息是不变的。这一点在许多论文中提到,例如著名的神经互信息估计MINE。