62.打家劫舍II

该博客探讨了一个使用动态规划算法解决环形房屋盗窃问题的编程挑战。小偷必须选择在不触发相邻防盗系统的情况下,从一组房屋中窃取最高金额。解题思路涉及在不偷窃首尾房屋的两种情况下分别计算最大收益,并返回两者中的较大值。代码展示了如何实现这一策略,通过递推公式dp[i]=Math.max(dp[i-2]+nums[i],dp[i-1])计算每个节点的最大收益。

一、题目描述

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。
在这里插入图片描述

提示:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 1000

二、解题思路

根据题目要求,如何才能保证第一间房屋和最后一间房屋不同时偷窃呢?如果偷窃了第一间房屋,则不能偷窃最后一间房屋,因此偷窃房屋的范围是第一间房屋到最后第二间房屋;如果偷窃了最后一间房屋,则不能偷窃第一间房屋,因此偷窃房屋的范围是第二间房屋到最后一间房屋。

假设数组nums的长度为 n如果不偷窃最后一间房屋,则偷窃房屋的下标范围是 [0, n-2]如果不偷窃第一间房屋,则偷窃房屋的下标范围是 [1, n-1]。在确定偷窃房屋的下标范围之后,即可用我的61_打家劫舍的方法解决。对于两段下标范围分别计算可以偷窃到的最高总金额,其中的最大值即为在 n 间房屋中可以偷窃到的最高总金额。

假设偷窃房屋的下标范围是 [start,end],用 dp[i] 表示在下标范围 [start,i]内可以偷窃到的最高总金额,那么就有如下的状态转移方程:

dp[i]=Math.max(dp[i-2]+nums[i],dp[i-1])

三、代码演示

class Solution {
    public int rob(int[] nums) {
        //特判
        if(nums==null || nums.length==0){
            return 0;
        }
        //当只有一件房子时候,就偷它
        if(nums.length == 1){
            return nums[0];
        }

        //根据不同情况传参
        //情况一:不偷窃最后一件房屋的范围
        int result1 = robRange(nums, 0, nums.length-2);
        //情况二:不偷窃第一件房屋
        int result2 = robRange(nums, 1, nums.length-1);
        return Math.max(result1, result2);
    }
     //下面这个方法根据传的参数不同进行不同计算
    public int robRange(int[] nums, int start, int end){
        if(end==start){
            return nums[start];
        }    

        //声明dp
        int[] dp = new int [nums.length+1];

        //dp初始化
        dp[start] = nums[start];
        dp[start+1] = Math.max(nums[start],nums[start+1]);

        //遍历
        for(int i=start+2; i<=end; i++){
            dp[i] = Math.max(dp[i-2]+nums[i],dp[i-1]);
        }
        return dp[end];
    }
}
# 力扣hot100刷题记录表 ### 一,哈希部分 - [ ] 1. 两数之和 (简单) - [ ] 2. 字母异位词分组(中等) - [ ] 3. 最长连续序列(中等) ### 二,双指针部分 - [ ] 4. 移动零(简单) - [ ] 5. 盛水最多的容器 (中等) - [ ] 6. 三数之和 (中等) - [ ] 7. 接雨水(困难) ### 三,滑动窗口 - [ ] 8. 无重复字符的最长子串(中等) - [ ] 9. 找到字符中所有的字母异位词(中等) ### 四,子串 - [ ] 10. 和为k的子数组(中等) - [ ] 11. 滑动窗口最大值(困难) - [ ] 12. 最小覆盖子窜(困难) ### 五,普通数组 - [ ] 13. 最大子数组和(中等) - [ ] 14. 合并区间(中等) - [ ] 15. 轮转数组(中等) - [ ] 16. 除自身以外数组的乘积(中等) - [ ] 17. 缺失的第一个正数(困难) ### 六,矩阵 - [ ] 18. 矩阵置零(中等) - [ ] 19. 螺旋矩阵 (中等) - [ ] 20. 旋转图像 (中等) - [ ] 21. 搜索二维矩阵Ⅱ (中等) ### 七,链表 - [ ] 22. 相交链表 (简单) - [ ] 23. 反转链表 (简单) - [ ] 24. 回文链表 (简单) - [ ] 25. 环形链表 (简单) - [ ] 26. 环形链表Ⅱ (中等) - [ ] 27. 合并两个有序链表 (简单) - [ ] 28. 两数相加 (中等) - [ ] 29. 删除链表的倒数第 N 个结点 (中等) - [ ] 30. 两两交换链表中的节点 (中等) - [ ] 31. K个一组翻转链表 (困难) - [ ] 32. 随机链表的复制 (中等) - [ ] 33. 排序链表 (中等) - [ ] 34. 合并 K 个升序链表 (困难) - [ ] 35. LRU 缓存 (中等) ### 八,二叉树 - [ ] 36. 二叉树的中序遍历 (简单) - [ ] 37. 二叉树的最大深度 (简单) - [ ] 38. 翻转二叉树 (简单) - [ ] 39. 对称二叉树 (简单) - [ ] 40. 二叉树的直径 (简单) - [ ] 41. 二叉树的层序遍历 (中等) - [ ] 42. 将有序数组转换为二叉搜索树 (简单) - [ ] 43. 验证二叉搜索树 (中等) - [ ] 44. 二叉搜索树中第 K 小的元素 (中等) - [ ] 45. 二叉树的右视图 (中等) - [ ] 46. 二叉树展开为链表 (中等) - [ ] 47. 从前序与中序遍历序列构造二叉树 (中等) - [ ] 48. 路径总和 III (中等) - [ ] 49. 二叉树的最近公共祖先 (中等) - [ ] 50. 二叉树中的最大路径和 (困难) ### 九,图论 - [ ] 51. 岛屿数量 (中等) - [ ] 52. 腐烂的橘子 (中等) - [ ] 53. 课程表 (中等) - [ ] 54. 实现 Trie(前缀树) (中等) ### 十,回溯 - [ ] 55.全排列(中等) - [ ] 56.子集(中等) - [ ] 57.电话号码的字母组合(中等) - [ ] 58.组合总和(中等) - [ ] 59.括号生成(中等) - [ ] 60.单词搜索(中等) - [ ] 61.分割回文串(中等) - [ ] 62.N 皇后 (困难) ### 十一,二分查找 - [ ] 63. 搜索插入位置 (简单) - [ ] 64. 搜索二维矩阵 (中等) - [ ] 65. 在排序数组中查找元素的第一个和最后一个位置 (中等) - [ ] 66. 搜索旋转排序数组 (中等) - [ ] 67. 寻找旋转排序数组中的最小值 (中等) - [ ] 68. 寻找两个正序数组的中位数 (困难) ### 十二,栈 - [ ] 69. 有效的括号 (简单) - [ ] 70. 最小栈 (中等) - [ ] 71. 字符串解码 (中等) - [ ] 72. 每日温度 (中等) - [ ] 73. 柱状图中最大的矩形 (困难) ### 十三,堆 - [ ] 74. 数组中的第K个最大元素 (中等) - [ ] 75. 前K 个高频元素 (中等) - [ ] 76. 数据流的中位数 (闲难) ### 十四,贪心算法 - [ ] 77. 买卖股票的最佳时机 (简单) - [ ] 78. 跳跃游戏 (中等) - [ ] 79. 跳跃游戏 III (中等) - [ ] 80. 划分字母区间 (中等) ### 十五,动态规划 - [ ] 81. 爬楼梯(简单) - [ ] 82. 杨辉三角 (简单) - [ ] 83. 打家劫舍 (中等) - [ ] 84. 完全平方数 (中等) - [ ] 85. 零钱兑换 (中等) - [ ] 86. 单词拆分 (中等) - [ ] 87. 最长递增子序列 (中等) - [ ] 88. 乘积最大子数组 (中等) ### 十六,多维动态规划 - [ ] 91. 不同路径 (中等) - [ ] 92. 最小路径和 (中等) - [ ] 93. 最长回文子串 (中等) - [ ] 94. 最长公共子序列 (中等) - [ ] 95. 编辑距离 (中等) ### 十七,技巧 - [ ] 96. 只出现一次的数字 (简单) - [ ] 97. 多数元素 (简单) - [ ] 98. 颜色分类 (中等) - [ ] 99. 下一个排列 (中等) - [ ] 100. 寻找重复数 (中等) 如何使用
最新发布
07-20
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值