从最大化复合因子单期IC角度看因子权重

本文对比了因子加权方法,重点研究最大化复合因子单期IC的效果。实证研究表明,该方法优于等权加权,解决了配置偏差问题,优化了因子组合的收益风险比。

 

未经授权,严禁转载

 

前言

 

本文沿用 Qian 的最优化体系获取因子权重,与之不同的是,我们将优化目标由最大化复合因子 IC_IR 变为最大化复合因子单期 IC。通过多个例子的实证研究发现,最大化单期IC能有效解决“等权”的配置偏差问题,在绝大部分因子空间,最优 IC 加权所构建的组合,其表现均优于按照“等权”方式所构建的组合。

 

研究目的

 

本文参考广发证券研报《从最大化复合因子单期 IC 角度看因子权重》,根据研报分析,现阶段应用较多的因子加权方法主要有以下几种: 等权加权、 IC 加权和 IC_IR 加权、以及最优化 IC_IR 加权。其中,等权加权是因子加权最传统的方法,这种方法受因子之间有效性差异、线性相关性影响明显。而 IC 加权、 IC_IR 加权对等权方式忽视了因子有效性差异的问题进行了改进,在大部分情况下会优于等权加权形式。最大化复合因子 IC_IR 加权已运用较广。

 

研究内容

 

(1)传统因子加权方式的局限性: 选择 ZZ800 为股票池,以市值因子和营业利润同比增长率为例,分析等权加权与 IC 加权的差异,根据回测结果分析两种因子加权方式的效用;

(2)设计最大化复合因子单期 IC 的理论最优比例: 本文沿用 Qian 的最优化体系获取因子权重,与之不同的是,我们将优化目标由最大化复合因子 IC_IR 变为最大化复合因子单期 IC。理论解析解的形式表明,最大化复合因子单期 IC 的权重与两方面因素有关: 一是因子的有效性,即因子 IC; 二是因子之间的相关系数。

(3)最大化复合因子单期 IC 的应用: 本文通过例子实证研究发现,最大化单期 IC 能有效解决“等权”的配置偏差问题,在绝大部分因子空间,最优 IC 加权 所构建的组合,其表现均优于按照“等权”方式所构建的组合。

 

研究结论

 

(1)通过对市值因子与营业利润同比增长率为例进行分析,IC 加权对等权方式忽视了因子有效性差异的问题进行了改进,在大部分情况下会优于等权加权形式。

(2)本文沿用 Qian 的最优化体系获取因子权重,与之不同的是,我们将优化目标由最大化复合因子 IR 变为最大化复合因子单期 IC,并根据该方法进行因子权重的计算。理论解析解的形式表明,最大化复合因子单期 IC 的权重与两方面因素有关: 一是因子的有效性,即因子 IC; 二是因子之间的相关系数。

(3)通过以下 7 个因子: 市盈率(PB)、市净率(PE)、市销

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值