多因子权重优化方法比较

本文探讨了在多因子量化投资中,如何优化因子权重以提高投资绩效。通过对不同合成方法(等权、PCA、逐步回归)的比较,发现PCA方法在具有高度相关性的因子中表现出色,具有较高的累积收益、较低回撤和良好夏普比率。逐步回归法的稳健性较差,权重配置可能随时间变化。此外,通过最大化复合因子IR的权重配置方式,使用压缩矩阵的方法能提供更稳定、高收益的权重优化效果。

­ 在多因子量化投资体系中,具有稳定的预期收益,可解释的经济驱动理论,与其他因子的低相关性是选择alpha因子的关键指标。本篇文章中,我们以此为因子选取标准,简单地构建了自己的因子库,总共包括八个大类因子,每个大类因子中包含四到五个子类细分因子。为了比较不同的权重优化方法的优劣,本文首先采取不同的方法对各个大类因子下的细分因子进行合成,确定了不同大类因子的各自最优的合成方法;其次,通过不同权重合成方法对合成的大类代理因子进行二次权重合成,并比较了这些不同合成方法下的因子表现差异。基于上述多因子权重优化建模体系,我们初步得出以下结论:

1、 同一大类因子下细分因子之间存在相关性,表现为细分因子IC值整体变化方向相近。

2、 不同大类因子适合不同的合成方式,PCA方法适用于具有较强相关性的细分因子,在选股绩效指标中,具有较大的累积收益和较低的回撤值,同时夏普比率和胜率表现良好,平均换手率较低,可以降低投资者在手续费佣金上的支出。

3、 在细分因子的合成方法中,逐步回归(stepwise)方法稳健性不佳,在不同的时期上同一大类因子下不同的细分因子的占比可能存在较大差异。

4、 在大类代理因子权重配置上,通过计算大类因子的IC进一步配置权重,可以看出合成后的因子受市场风格轮动影响,权重取值波动频繁,通过观察选股绩效指标,使用压缩矩阵最大化复合因子IR的权重配置方式可以达到较佳权重优化的效果。使用平均IC赋予大类因子权重时,选股结果显示这种方式对市场风格变化的敏感程度较强。

一、 驱动逻辑与建模框架 在前两篇文章中,我们对估值因子和波动率因子进行了详细的分析,但是前文的分析仅仅局限于某个大类因子中其包含的细分因子的有效性检验。然而在真实的市场环境下,投资者将所有的风险都暴露在某一个因子下,显然是不够理性的。为此,本篇将对因子的合成方法进行探讨,以求能最大化各因子有效性带来的溢价的同时降低单个因子带来的风险暴露,达到二者之间的一个动态平衡。

常见的多因子合成方法包括:

  1. 等权加权

  2. IC均值加权

  3. IR_IC加权

以往的多因子合成方法的研究,很少考虑到大类因子本身的合成,仅纯粹地对所选定的因子进行合成,用某一个大类因子下的细分因子代替该大类因子,具有一定的随意性。本文尝试首先对大类因子内的细分因子进行选取合成,然后利用相对表现较好的合成方法得到的大类因子的代理变量来进一步合成最终的选股因子。

通过前两篇对估值因子和波动率因子的分析,我们发现大类因子中的细分因子之间存在较高的相关性。具有高相关性的细分因子大多代表了相同的一类信息,为了消除细分因子之间的共线性,最大化地提取该大类因子的信息,本文对大类因子下的细分因子信息进行提取,主要采取了以下三种方法。

方法一:基于等权的思想对大类因子下的细分因子进行加权

方法二:利用PCA方法对具有高相关性的因子进行降维,使用降维后的特征变量作为该大类因子的代理变量,其中方差解释率最低要求为70%

方法三:利用逐步回归法对各大类因子下的细分因子进行回归,选取能够最大程度提升模型解释力度的细分因子进入备选因子集,对所有备选因子进行简单平均得到合成后的大类因子代理变量

图1 逐步回归(stepwise)流程图

注:图片来源于wikipedia

        在根据以上三种方法合成得到大类因子后,我们选取整体表现最好的合成方法作为大类因子的代理变量生成器,在此基础上,对各大类因子进行再次合成。此时,大类因子之间的合成将采用以下四种方法:

        方法一:大类因子之间进行等权处理,即赋予每个大类因子相同的权重。该种处理方法没有考虑到各大类因子之间的有效性以及稳定性的差异,也忽略了因子之间的相关性。

        方法二:根据大类因子的IC均值加权合成。不同的大类因子之间其因子有效性是存在差异的,根据以往的研究结果,一般而言估值因子和规模因子都是表现相对显著的,而杠杆,运营因子都是表现相对较差的因子,如果以等权的方式来对各大类因子进行加权,则忽略了不同因子的解释力度。

        方法三:基于大类因子的IR_IC值进行加权。基于IR_IC的加权方法综合考虑了因子有效性和稳定性,在保证因子收益的同时也考虑了因子的波动性。其中IR的定义为IC的均值除以IC的标准差。

        方法四:最大化复合因子IR。根据Qian在《Quantitative Equity Portfolio Management》中提出的方法,我们可以通过最大化复合因子的IR来获得因子最优权重,利用求解得到的最优权重去合成新的因子。假设测试期内N个因子的权重向量分别为,因子IC值的向量分别为 ,IC构成的协方差矩阵为,则复合因子的 ,其中,通过对W求导,可以直接解得最优权重的解析解为。
复制代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值