无需参数访问!CMU用大模型自动优化视觉语言提示词 | CVPR’24

林之秋 投稿
量子位 | 公众号 QbitAI

视觉语言模型(如 GPT-4o、DALL-E 3)通常拥有数十亿参数,且模型权重不公开,使得传统的白盒优化方法(如反向传播)难以实施。

那么,有没有更轻松的优化方法呢?

就在最近,卡内基梅隆大学(CMU)的研究团队对于这个问题提出了一种创新的“黑盒优化”策略——

通过大语言模型自动调整自然语言提示词,使视觉语言模型在文生图、视觉识别等多个下游任务中获得更好的表现。

这一方法不仅无需触及模型内部参数,还大幅提升了优化的灵活性与速度,让用户即使没有技术背景也能轻松提升模型性能。

该研究已被 CVPR 2024 接收。

0e95504674a76b670542bf096504464e.png

如何做到的?

大多数视觉语言模型(如 DALL-E 3、GPT-4o 等)并未公开模型权重或特征嵌入,导致传统依赖反向传播的优化方式不再适用。

不过,这些模型通常向用户开放了自然语言接口,使得通过优化提示词来提升模型表现成为可能。

然而,传统的提示词工程严重依赖工程师的经验和先验知识。

例如,为提升 CLIP 模型的视觉识别效果,OpenAI 花费了一年时间收集了几十种有效的提示词模板(如 “A good photo of a [class]”)。

同样,在使用DALL-E 3和Stable Diffusion等文生图模型时,用户往往也需掌握大量提示词技巧才能生成满意的结果。

那么,有没有替代人类提示词工程师的方法?

有的 CMU 团队提出了一种新策略:用 ChatGPT 等大语言模型自动优化提示词。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值