CMU机器狗,倒立下楼!发布即开源

CMU机器狗:极限动作全靠神经网络,跑酷技能开源,
部署运行你感兴趣的模型镜像
丰色 发自 凹非寺
量子位 | 公众号 QbitAI

讲真,机器狗的花活见得多了——

但今天还是有被惊艳到

来自CMU的最新成果,直接让狗子学会了:

两倍身长的跳高、跳远、倒立撒欢儿甚至倒立下楼梯84f7c24b7384504583c421dbfdf74b5d.png

话不多说,直接放图感受一波:

835b182c9134fb66e640494347f1dd2c.gif

 这是跳远

f5ea34d283057ff4d42f8276eaaab6ab.gif

 这是跳高

df5213b6ae63995ffd886961c3254b7e.gif

 倒立撒欢儿

2c4b62702fed7511d5b065c331cc49d7.gif

 倒立下楼梯

不得不说,尤其跳高那段中的“挣扎”显得狗子特别灵魂。

除了这些s操作,CMU也公布了几段跑酷视频,完全自主的那种

上坎儿、过缝隙、跨斜坡,那叫一个溜。

b39cbcc92f6e38c9c18c24ee24ce0b8f.gif

中间即使有“失误”,也丝毫不影响它立即前进。

72e904d0957ac15435e20458cc44270e.gif

笑鼠,甚至还给安排了一段压力测试,结果当然是“通过”~

a26e04a10788c9d562774940d6decf56.gif

最厉害的是,据CMU介绍,以上这些极限操作,全部靠单个神经网络完成。

LeCun大佬听了,都得反手一个赞。

353d18f618445a2bdacab3c5c79ffb78.png

如此灵魂,如何炼成?

在推文中,作者对这只狗子的技术进行了挨个解析。

首先,比起基于视觉的端到端行走,2倍身长跳高跳远这种极限操作可谓完全不属同一个level。

毕竟,任何一个失误都可能是“致命的”。

对此,CMU采用sim2real来实现精准的足部控制和挑战,最大限度地发挥机械优势。

其中,模拟器用的是Gym。

其次,倒立。用两条腿行走显然比用四条腿要困难得多。

但CMU的机器狗使用相同的基本方法同时实现了这两种任务,甚至还可以一边倒立一边下楼梯。

第三,对于跑酷操作来说(本研究重点),机器狗必须通过精确的“眼部肌肉”协调来自己决定前进方向,而非听从人类指挥

比如连续过两个斜坡时,它需要以一个非常特定的角度跳上坡道,然后立即改变方向。

f0ce29d8ed5330b59c29b7a329d3eb9a.gif

为了学会这些正确的方向,CMU使用MTS(Mixed Teacher Student)系统来教会机器狗。

其中,仅当预测方向接近真实值时才会被系统采纳。

具体而言,该系统分为两个阶段

第一阶段,先利用RL学习一种移动策略,该过程可以访问一些特权信息,除了环境参数和扫描点(scandots)以外,CMU还为机器狗适当提供了一些标志点(waypoints),目的是引导大体方向。

278fa2ad8cc0a19e120199c06e704704.gif

然后,使用正则化在线自适应(Regularized Online Adaptation ,ROA)来训练评估器,以便从观察历史中恢复环境信息。

第二阶段,从扫描点(scandots)中提取策略,系统将根据该策略和深度信息自主决定如何前进,从而敏捷地输出电机命令。

整个过程就像“老师教,学生举一反三学习”。

除了这个系统之外,由于跑酷需要用上各种不同动作穿越障碍,因此为每一个障碍设计特定奖励函数也是一件头疼的事儿。

在此,作者选择为所有任务制定了一个统一且简单的内积奖励函数。

它可以自动产生不同的奖励,并完全适应不同的地形形状。

afd00a5ed665924773a8be5c969e2065.gif

没有它,狗子的表现就是这样的:

8225fb73269e44ddc8b1d6a78068914e.gif

最后,CMU还提出了一种全新的双重蒸馏(dual distillation)方法,用于从深度图像中提取敏捷的运动指令和快速波动的前进方向。

同样,没有它,狗子的表现也跟个“醉汉”似的:

778a55c19525ddee24694faa797e7034.gif

经过如上一番操作,这只狗子终于学会了全新的自主跑酷,并穿插高难度动作。

是不是很心动?别急:

以上这些成果,CMU已全部开源(瞧这日期,还是热乎的呢)。

f64474b524ffd9bdc4c32836c11eac05.png

同时,论文也上线了。大家可以在结尾获取。

作者介绍

本研究全部由CMU完成,一共四位作者。

0e9389f26ae9947a78cd7dc2094d031b.png

其中两位共同一作,且都是华人

一位叫Xuxin Cheng,这项工作是他在CMU读研时完成的,他现在是加州大学圣地亚哥分校(UCSD)的博士生,导师为王小龙;

另一位叫石可心,CMU机器人研究所的访问学者。她本科毕业于西安交大。

项目主页(包含论文、代码等链接):
https://extreme-parkour.github.io/

「AIGC+垂直领域社群」

招募中!

欢迎关注AIGC的伙伴们加入AIGC+垂直领域社群,一起学习、探索、创新AIGC!

请备注您想加入的垂直领域「教育」或「广告营销」,加入AIGC人才社群请备注「人才」&「姓名-公司-职位」。

973860f4ae22350eb5003d7279a11f07.png

点这里👇关注我,记得标星哦~

您可能感兴趣的与本文相关的镜像

Facefusion

Facefusion

AI应用

FaceFusion是全新一代AI换脸工具,无需安装,一键运行,可以完成去遮挡,高清化,卡通脸一键替换,并且Nvidia/AMD等显卡全平台支持

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值