Description
You are given two sequences of integer numbers. Write a program to determine their common increasing subsequence of maximal possible length.
Sequence S1 , S2 , … , SN of length N is called an increasing subsequence of a sequence A1 , A2 , … , AM of length M if there exist 1 <= i1 < i2 < … < iN <= M such that Sj = Aij for all 1 <= j <= N , and Sj < Sj+1 for all 1 <= j < N .
【题目分析】
最长公共上升子序列问题,只需要巧妙地转换一下思路,就可最长公共子序列差不多了。三种情况的转移和处理都十分巧妙
【代码】
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <ctime>
using namespace std;
int n,m,a[5001],b[5001];
int dp[5001][5001],pre[5001][5001];
int out[5001];
int main()
{
// freopen("sail.in","r",stdin);
// freopen("sail.out","w",stdout);
scanf("%d",&n);for (int i=1;i<=n;++i) scanf("%d",&a[i]);
scanf("%d",&m);for (int i=1;i<=m;++i) scanf("%d",&b[i]);
int ans=0,now,cnt=0;
for (int i=1;i<=n;++i)
{
int k=0;
for (int j=1;j<=m;++j)
{
if (a[i]!=b[j]) dp[i][j]=dp[i-1][j];
if (a[i]>b[j]&&dp[i][j]>dp[i][k]) k=j;
if (a[i]==b[j]) dp[i][j]=dp[i][k]+1,pre[i][j]=k;
}
}
// for (int i=1;i<=n;++i)
// {
// for (int j=1;j<=m;++j)
// cout<<dp[i][j]<<" ";
// cout<<endl;
// }
int y=0,x=n;
for (int i=1;i<=m;++i)
if (ans<dp[n][i]) y=i,ans=dp[n][i];
while (dp[x][y])
{
if (a[x]!=b[y]) x--;
else out[++cnt]=a[x],y=pre[x][y];
}
cout<<cnt<<endl;
while (cnt>0)
{
if (cnt==1) printf("%d",out[cnt]);
else printf("%d ",out[cnt]);
cnt--;
}
}