POJ 1050 To the Max

本文介绍了一种解决二维数组中寻找具有最大和的子矩阵的方法。通过暴力枚举行并利用一维最大子数组求和算法,该算法能够有效地找到最大子矩阵及其和。

Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.


【题目分析】
与其说是动态规划,其实暴力枚举的成分更多一些,每次枚举一定的行,然后从前往后扫一遍。其实就是最大子序列的和。dp[i]=max(dp[i],dp[i-1]+a[i]);然后暴力的枚举一下。
就是一道水题。


【代码】

#include <cstdio>
#include <cstring>
#include <iostream> 
using namespace std;
int a[101][101],n,ans=0;
int main()
{
    cin>>n;
    for (int i=1;i<=n;++i)
        for (int j=1;j<=n;++j)
            cin>>a[i][j],a[i][j]+=a[i-1][j];
    for (int i=1;i<=n;++i)
        for (int j=i;j<=n;++j)
        {
            int sum=0;
            for (int k=1;k<=n;++k)
            {
                sum+=a[j][k]-a[i-1][k];
                if (sum<0) sum=0;
                ans=max(ans,sum);
            }
        }
    printf("%d\n",ans);
}
基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不依赖物理位置传感器的情况下,如何通过算法实现对电机转子位置和速度的精确估计与控制。文中结合嵌入式开发平台STM32 F4,采用如滑模观测器、扩展卡尔曼滤波或高频注入法等先进观测技术,实现对电机反电动势或磁链的估算,进而完成无传感器矢量控制(FOC)。同时,研究涵盖系统建模、控制算法设计、仿真验证(可能使用Simulink)以及在STM32硬件平台上的代码实现与调试,旨在提高电机控制系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电力电子、自动控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师。; 使用场景及目标:①掌握永磁同步电机无位置传感器控制的核心原理与实现方法;②学习如何在STM32平台上进行电机控制算法的移植与优化;③为开发高性能、低成本的电机驱动系统提供技术参考与实践指导。; 阅读建议:建议读者结合文中提到的控制理论、仿真模型与实际代码实现进行系统学习,有条件者应在实验平台上进行验证,重点关注观测器设计、参数整定及系统稳定性分析等关键环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值