Basic Understanding of GAT

References:

  1. https://arxiv.org/abs/1710.10903
  2. https://petar-v.com/GAT/

Motivation for graph convolutions

在这里插入图片描述
Enumerating the desirable traits of image convolutions, we arrive at the following properties we would ideally like our graph convolutional layer to have:

  • Computational and storage efficiency (requiring no more than O ( V + E ) O(V+E) O(V+E) time and memory);
  • Fixed number of parameters (independent of input graph size);
  • Localization (acting on a local neighborhood of a node);
  • Ability to specify arbitrary importances to different neighbors;
  • Applicability to inductive problems (arbitrary, unseen graph structures).

Towards a viable graph convolution

A graph of n n n nodes:

  • a set of node features: ( h ⃗ 1 , h ⃗ 2 , . . . , h ⃗ n ) (\vec{h}_1,\vec{h}_2,..., \vec{h}_n) (h 1,h 2,...,h n)
  • an adjacency matrix A A A: A i j = 1 A_{ij}=1 Aij=1 if i i i and j j j are connected, and 0 otherwise
  • A graph convolutional layer then computes a set of new node features ( h ⃗ 1 ′ , h ⃗ 2 ′ , . . . , h ⃗ n ′ ) (\vec{h}_1',\vec{h}_2',..., \vec{h}_n') (h
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值