计算机视觉之相机成像几何模型(原理)与相机标定内参和外参(代码)

本文深入解析了相机成像的几何模型,包括四大坐标系的转换原理,以及从世界坐标系到像素坐标系的整个成像过程。同时,详细介绍了相机标定的代码实现,涵盖内参和外参的计算,以及标定结果的评估。

相机成像几何模型(原理)

一、四大坐标系及目的

四大坐标系:世界坐标系(测量坐标系),相机坐标系,图像坐标系(胶卷坐标系,连续值),像素坐标系。
在这里插入图片描述
目的:用数学方式描述3D点如何投影到2D像素坐标系中(正投影:Forward projection),以及反过来的投影过程(Back projection)。
计算机视觉的首要任务就是要通过拍摄到的图像信息获取到物体在真实三维世界里相对应的信息,于是,建立物体从三维世界映射到相机成像平面这一过程中的几何模型就显得尤为重要
 另外,描述相机坐标系下的3D点投影到图像坐标系下2D点的过程称为透视投影(perspective projection)。其中,f为相机焦距,(X,Y,Z)为相机坐标系下某点的坐标,(x,y)为图像坐标系下与(X,Y,Z)对应的坐标。

二、从世界坐标系到相机坐标系的变换

世界坐标系:也称测量坐标系,它是一个三维直角坐标系( x w , y w , z w x_w,y_w,z_w xw,yw,zw)。
 在世界坐标系中,可以描述相机待测物体的空间位置。而世界坐标系的位置根据实际情况自行确定。

相机坐标系:它也是一个三维直角坐标系( x c , y c , z c x_c,y_c,z_c xc,yc,zc)。
 相机坐标系的原点是镜头的光心,x、y轴分别与像平面两边平行,z轴为镜头的光轴,与像平面垂直。

从世界坐标系到相机坐标系:刚体变换,也就是只改变物体的空间位置(平移)和朝向(旋转),而不改变物体的形状。
 用旋转矩阵R平移向量t可以表示这种变换。
 在齐次坐标下,旋转矩阵R是正交矩阵,可通过Rodrigues变换转为只有三个独立变量的旋转向量。因此,刚体变换用6个参数就可以表示(3个旋转向量,3个平移向量),而这6个参数就作为相机的外参。
 相机外参实现了空间点从世界坐标系到相机坐标系的变换。
[ x c y c z c ] = R [ x w y w z w ] + t \begin{bmatrix} x_c \\ y_c\\ z_c \end{bmatrix}=R\begin{bmatrix}x_w\\y_w\\z_w\end{bmatrix}+t xcyczc=Rxwywzw+t

其中,R 是 3 × \times × 3,t 是 3 × \times × 1。

齐次坐标下,可以表示为:

[ x c y c z c 1 ] = [ R t 0 T 1 ] ⋅ [ x w y w z w 1 ] = [ r 11 r 12 r 13 t x r 21 r 22 r 23 t y r 31 r 32 r 33 t z 0 0 0 1 ] ⋅ [ x w y w z w 1 ] \begin{bmatrix}x_c\\y_c\\z_c\\1\end{bmatrix}=\begin{bmatrix}R&t\\0^T&1\end{bmatrix}·\begin{bmatrix}x_w\\y_w\\z_w\\1\end{bmatrix}=\begin{bmatrix}r_{11}&r_{12}&r_{13}&t_x\\r_{21}&r_{22}&r_{23}&t_y\\r_{31}&r_{32}&r_{33}&t_z\\0&0&0&1\end{bmatrix}·\begin{bmatrix}x_w\\y_w\\z_w\\1\end{bmatrix} xcyczc1=[R0Tt1]xwywzw1=r11r21r310r12r22r320r13

评论 4
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值