行列式
1.行列式按行(列)展开定理
(1) 设A=(aij)n×nA = ( a_{{ij}} )_{n \times n}A=(aij)n×n,则:ai1Aj1+ai2Aj2+⋯+ainAjn={∣A∣,i=j0,i≠ja_{i1}A_{j1} +a_{i2}A_{j2} + \cdots + a_{{in}}A_{{jn}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases}ai1Aj1+ai2Aj2+⋯+ainAjn={∣A∣,i=j0,i=j
或a1iA1j+a2iA2j+⋯+aniAnj={∣A∣,i=j0,i≠ja_{1i}A_{1j} + a_{2i}A_{2j} + \cdots + a_{{ni}}A_{{nj}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases}a1iA1j+a2iA2j+⋯+aniAnj={∣A∣,i=j0,i=j即 AA∗=A∗A=∣A∣E,AA^{*} = A^{*}A = \left| A \right|E,AA∗=A∗A=∣A∣E,其中:A∗=(A11A12…A1nA21A22…A2n…………An1An2…Ann)=(Aji)=(Aij)TA^{*} = \begin{pmatrix} A_{11} & A_{12} & \ldots & A_{1n} \\ A_{21} & A_{22} & \ldots & A_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ A_{n1} & A_{n2} & \ldots & A_{{nn}} \\ \end{pmatrix} = (A_{{ji}}) = {(A_{{ij}})}^{T}A∗=A11A21…An1A12A22…An2…………A1nA2n…Ann=(Aji)=(Aij)T
Dn=∣11…1x1x2…xn…………x1n−1x2n−1…xnn−1∣=∏1≤j<i≤n (xi−xj)D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n - 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j})Dn=1x1…x1n−11x2…x2n−1…………1xn…xnn−1=∏1≤j<i≤n(xi−xj)
(2) 设A,BA,BA,B为nnn阶方阵,则∣AB∣=∣A∣∣B∣=∣B∣∣A∣=∣BA∣\left| {AB} \right| = \left| A \right|\left| B \right| = \left| B \right|\left| A \right| = \left| {BA} \right|∣AB∣=∣A∣∣B∣=∣B∣∣A∣=∣BA∣,但∣A±B∣=∣A∣±∣B∣\left| A \pm B \right| = \left| A \right| \pm \left| B \right|∣A±B∣=∣A∣±∣B∣不一定成立。
(3) ∣kA∣=kn∣A∣\left| {kA} \right| = k^{n}\left| A \right|∣kA∣=kn∣A∣,AAA为nnn阶方阵。
(4) 设AAA为nnn阶方阵,∣AT∣=∣A∣;∣A−1∣=∣A∣−1|A^{T}| = |A|;|A^{- 1}| = |A|^{- 1}∣AT∣=∣A∣;∣A−1∣=∣A∣−1(若AAA可逆),∣A∗∣=∣A∣n−1|A^{*}| = |A|^{n - 1}∣A∗∣=∣A∣n−1
n≥2n \geq 2n≥2
(5) ∣AOOB∣=∣ACOB∣=∣AOCB∣=∣A∣∣B∣\left| \begin{matrix} & {A\quad O} \\ & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & {A\quad C} \\ & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & {A\quad O} \\ & {C\quad B} \\ \end{matrix} \right| =| A||B|AOOB=ACOB=AOCB=∣A∣∣B∣
,A,BA,BA,B为方阵,但∣OAm×mBn×nO∣=(−1)mn∣A∣∣B∣\left| \begin{matrix} {O} & A_{m \times m} \\ B_{n \times n} & { O} \\ \end{matrix} \right| = ({- 1)}^{{mn}}|A||B|OBn×nAm×mO=(−1)mn∣A∣∣B∣ 。
(6) 范德蒙行列式Dn=∣11…1x1x2…xn…………x1n−1x2n1…xnn−1∣=∏1≤j<i≤n (xi−xj)D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j})Dn=1x1…x1n−11x2…x2n1…………1xn…xnn−1=∏1≤j<i≤n(xi−xj)
设AAA是nnn阶方阵,λi(i=1,2⋯ ,n)\lambda_{i}(i = 1,2\cdots,n)λi(i=1,2⋯,n)是AAA的nnn个特征值,则
∣A∣=∏i=1nλi|A| = \prod_{i = 1}^{n}\lambda_{i}∣A∣=∏i=1nλi
矩阵
矩阵:m×nm \times nm×n个数aija_{{ij}}aij排成mmm行nnn列的表格[a11a12⋯a1na21a22⋯a2n⋯⋯⋯⋯⋯am1am2⋯amn]\begin{bmatrix} a_{11}\quad a_{12}\quad\cdots\quad a_{1n} \\ a_{21}\quad a_{22}\quad\cdots\quad a_{2n} \\ \quad\cdots\cdots\cdots\cdots\cdots \\ a_{m1}\quad a_{m2}\quad\cdots\quad a_{{mn}} \\ \end{bmatrix}a11a12⋯a1na21a22⋯a2n⋯⋯⋯⋯⋯am1am2⋯amn 称为矩阵,简记为AAA,或者(aij)m×n\left( a_{{ij}} \right)_{m \times n}(aij)m×n 。若m=nm = nm=n,则称AAA是nnn阶矩阵或nnn阶方阵。
矩阵的线性运算
1.矩阵的加法
设A=(aij),B=(bij)A = (a_{{ij}}),B = (b_{{ij}})A=(aij),B=(bij)是两个m×nm \times nm×n矩阵,则m×nm \times nm×n 矩阵C=cij)=aij+bijC = c_{{ij}}) = a_{{ij}} + b_{{ij}}C=cij)=aij+bij称为矩阵AAA与BBB的和,记为A+B=CA + B = CA+B=C 。
2.矩阵的数乘
设A=(aij)A = (a_{{ij}})A=(aij)是m×nm \times nm×n矩阵,kkk是一个常数,则m×nm \times nm×n矩阵(kaij)(ka_{{ij}})(kaij)称为数kkk与矩阵AAA的数乘,记为kA{kA}kA。
3.矩阵的乘法
设A=(aij)A = (a_{{ij}})A=(aij)是m×nm \times nm×n矩阵,B=(bij)B = (b_{{ij}})B=(bij)是n×sn \times sn×s矩阵,那么m×sm \times sm×s矩阵C=(cij)C = (c_{{ij}})C=(cij),其中cij=ai1b1j+ai2b2j+⋯+ainbnj=∑k=1naikbkjc_{{ij}} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{{in}}b_{{nj}} = \sum_{k =1}^{n}{a_{{ik}}b_{{kj}}}cij=ai1b1j+ai2b2j+⋯+ainbnj=∑k=1naikbkj称为AB{AB}AB的乘积,记为C=ABC = ABC=AB 。
4. AT\mathbf{A}^{\mathbf{T}}AT、A−1\mathbf{A}^{\mathbf{-1}}A−1、A∗\mathbf{A}^{\mathbf{*}}A∗三者之间的关系
(1) (AT)T=A,(AB)T=BTAT,(kA)T=kAT,(A±B)T=AT±BT{(A^{T})}^{T} = A,{(AB)}^{T} = B^{T}A^{T},{(kA)}^{T} = kA^{T},{(A \pm B)}^{T} = A^{T} \pm B^{T}(AT)T=A,(AB)T=BTAT,(kA)T=kAT,(A±B)T=AT±BT
(2) (A−1)−1=A,(AB)−1=B−1A−1,(kA)−1=1kA−1,\left( A^{- 1} \right)^{- 1} = A,\left( {AB} \right)^{- 1} = B^{- 1}A^{- 1},\left( {kA} \right)^{- 1} = \frac{1}{k}A^{- 1},(A−1)−1=A,(AB)−1=B−1A−1,(kA)−1=k1A−1,
但 (A±B)−1=A−1±B−1{(A \pm B)}^{- 1} = A^{- 1} \pm B^{- 1}(A±B)−1=A−1±B−1不一定成立。
(3) (A∗)∗=∣A∣n−2 A (n≥3)\left( A^{*} \right)^{*} = |A|^{n - 2}\ A\ \ (n \geq 3)(A∗)∗=∣A∣n−2 A (n≥3),(AB)∗=B∗A∗,\left({AB} \right)^{*} = B^{*}A^{*},(AB)∗=B∗A∗, (kA)∗=kn−1A∗ (n≥2)\left( {kA} \right)^{*} = k^{n -1}A^{*}{\ \ }\left( n \geq 2 \right)(kA)∗=kn−1A∗ (n≥2)
但(A±B)∗=A∗±B∗\left( A \pm B \right)^{*} = A^{*} \pm B^{*}(A±B)∗=A∗±B∗不一定成立。
(4) (A−1)T=(AT)−1, (A−1)∗=(AA∗)−1,(A∗)T=(AT)∗{(A^{- 1})}^{T} = {(A^{T})}^{- 1},\ \left( A^{- 1} \right)^{*} ={(AA^{*})}^{- 1},{(A^{*})}^{T} = \left( A^{T} \right)^{*}(A−1)T=(AT)−1, (A−1)∗=(AA∗)−1,(A∗)T=(AT)∗
5.有关A∗\mathbf{A}^{\mathbf{*}}A∗的结论
(1) AA∗=A∗A=∣A∣EAA^{*} = A^{*}A = |A|EAA∗=A∗A=∣A∣E
(2) ∣A∗∣=∣A∣n−1 (n≥2), (kA)∗=kn−1A∗, (A∗)∗=∣A∣n−2A(n≥3)|A^{*}| = |A|^{n - 1}\ (n \geq 2),\ \ \ \ {(kA)}^{*} = k^{n -1}A^{*},{{\ \ }\left( A^{*} \right)}^{*} = |A|^{n - 2}A(n \geq 3)∣A∗∣=∣A∣n−1 (n≥2), (kA)∗=kn−1A∗, (A∗)∗=∣A∣n−2A(n≥3)
(3) 若AAA可逆,则A∗=∣A∣A−1,(A∗)∗=1∣A∣AA^{*} = |A|A^{- 1},{(A^{*})}^{*} = \frac{1}{|A|}AA∗=∣A∣A−1,(A∗)∗=∣A∣1A
(4) 若AAA为nnn阶方阵,则:
r(A∗)={n,r(A)=n1,r(A)=n−10,r(A)<n−1r(A^*)=\begin{cases}n,\quad r(A)=n\\ 1,\quad r(A)=n-1\\ 0,\quad r(A)<n-1\end{cases}r(A∗)=⎩⎨⎧n,r(A)=n1,r(A)=n−10,r(A)<n−1
6.有关A−1\mathbf{A}^{\mathbf{- 1}}A−1的结论
AAA可逆⇔AB=E;⇔∣A∣≠0;⇔r(A)=n;\Leftrightarrow AB = E; \Leftrightarrow |A| \neq 0; \Leftrightarrow r(A) = n;⇔AB=E;⇔∣A∣=0;⇔r(A)=n;
⇔A\Leftrightarrow A⇔A可以表示为初等矩阵的乘积;⇔Ax=0\Leftrightarrow Ax = 0⇔Ax=0只有零解。
7.有关矩阵秩的结论
(1) 秩r(A)r(A)r(A)=行秩=列秩;
(2) r(Am×n)≤min(m,n);r(A_{m \times n}) \leq \min(m,n);r(Am×n)≤min(m,n);
(3) A≠0⇒r(A)≥1A \neq 0 \Rightarrow r(A) \geq 1A=0⇒r(A)≥1;
(4) r(A±B)≤r(A)+r(B);r(A \pm B) \leq r(A) + r(B);r(A±B)≤r(A)+r(B);
(5) 初等变换不改变矩阵的秩
(6) r(A)+r(B)−n≤r(AB)≤min(r(A),r(B)),r(A) + r(B) - n \leq r(AB) \leq \min(r(A),r(B)),r(A)+r(B)−n≤r(AB)≤min(r(A),r(B)),特别若AB=OAB = OAB=O
则:r(A)+r(B)≤nr(A) + r(B) \leq nr(A)+r(B)≤n
(7) 若A−1A^{- 1}A−1存在⇒r(AB)=r(B);\Rightarrow r(AB) = r(B);⇒r(AB)=r(B); 若B−1B^{- 1}B−1存在
⇒r(AB)=r(A);\Rightarrow r(AB) = r(A);⇒r(AB)=r(A);
若r(Am×n)=n⇒r(AB)=r(B);r(A_{m \times n}) = n \Rightarrow r(AB) = r(B);r(Am×n)=n⇒r(AB)=r(B); 若r(Am×s)=n⇒r(AB)=r(A)r(A_{m \times s}) = n\Rightarrow r(AB) = r\left( A \right)r(Am×s)=n⇒r(AB)=r(A)。
(8) r(Am×s)=n⇔Ax=0r(A_{m \times s}) = n \Leftrightarrow Ax = 0r(Am×s)=n⇔Ax=0只有零解
8.分块求逆公式
(AOOB)−1=(A−1OOB−1)\begin{pmatrix} A & O \\ O & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{-1} & O \\ O & B^{- 1} \\ \end{pmatrix}(AOOB)−1=(A−1OOB−1); (ACOB)−1=(A−1−A−1CB−1OB−1)\begin{pmatrix} A & C \\ O & B \\\end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}& - A^{- 1}CB^{- 1} \\ O & B^{- 1} \\ \end{pmatrix}(AOCB)−1=(A−1O−A−1CB−1B−1);
(AOCB)−1=(A−1O−B−1CA−1B−1)\begin{pmatrix} A & O \\ C & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}&{O} \\ - B^{- 1}CA^{- 1} & B^{- 1} \\\end{pmatrix}(ACOB)−1=(A−1−B−1CA−1OB−1); (OABO)−1=(OB−1A−1O)\begin{pmatrix} O & A \\ B & O \\ \end{pmatrix}^{- 1} =\begin{pmatrix} O & B^{- 1} \\ A^{- 1} & O \\ \end{pmatrix}(OBAO)−1=(OA−1B−1O)
这里AAA,BBB均为可逆方阵。
向量
1.有关向量组的线性表示
(1)α1,α2,⋯ ,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1,α2,⋯,αs线性相关⇔\Leftrightarrow⇔至少有一个向量可以用其余向量线性表示。
(2)α1,α2,⋯ ,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1,α2,⋯,αs线性无关,α1,α2,⋯ ,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1,α2,⋯,αs,β\betaβ线性相关⇔β\Leftrightarrow \beta⇔β可以由α1,α2,⋯ ,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1,α2,⋯,αs唯一线性表示。
(3) β\betaβ可以由α1,α2,⋯ ,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1,α2,⋯,αs线性表示
⇔r(α1,α2,⋯ ,αs)=r(α1,α2,⋯ ,αs,β)\Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta)⇔r(α1,α2,⋯,αs)=r(α1,α2,⋯,αs,β) 。
2.有关向量组的线性相关性
(1)部分相关,整体相关;整体无关,部分无关.
(2) ① nnn个nnn维向量
α1,α2⋯αn\alpha_{1},\alpha_{2}\cdots\alpha_{n}α1,α2⋯αn线性无关⇔∣[α1α2⋯αn]∣≠0\Leftrightarrow \left|\left\lbrack \alpha_{1}\alpha_{2}\cdots\alpha_{n} \right\rbrack \right| \neq0⇔∣[α1α2⋯αn]∣=0, nnn个nnn维向量α1,α2⋯αn\alpha_{1},\alpha_{2}\cdots\alpha_{n}α1,α2⋯αn线性相关
⇔∣[α1,α2,⋯ ,αn]∣=0\Leftrightarrow |\lbrack\alpha_{1},\alpha_{2},\cdots,\alpha_{n}\rbrack| = 0⇔∣[α1,α2,⋯,αn]∣=0
。
② n+1n + 1n+1个nnn维向量线性相关。
③ 若α1,α2⋯αS\alpha_{1},\alpha_{2}\cdots\alpha_{S}α1,α2⋯αS线性无关,则添加分量后仍线性无关;或一组向量线性相关,去掉某些分量后仍线性相关。
3.有关向量组的线性表示
(1) α1,α2,⋯ ,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1,α2,⋯,αs线性相关⇔\Leftrightarrow⇔至少有一个向量可以用其余向量线性表示。
(2) α1,α2,⋯ ,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1,α2,⋯,αs线性无关,α1,α2,⋯ ,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1,α2,⋯,αs,β\betaβ线性相关⇔β\Leftrightarrow\beta⇔β 可以由α1,α2,⋯ ,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1,α2,⋯,αs唯一线性表示。
(3) β\betaβ可以由α1,α2,⋯ ,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1,α2,⋯,αs线性表示
⇔r(α1,α2,⋯ ,αs)=r(α1,α2,⋯ ,αs,β)\Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta)⇔r(α1,α2,⋯,αs)=r(α1,α2,⋯,αs,β)
4.向量组的秩与矩阵的秩之间的关系
设r(Am×n)=rr(A_{m \times n}) =rr(Am×n)=r,则AAA的秩r(A)r(A)r(A)与AAA的行列向量组的线性相关性关系为:
(1) 若r(Am×n)=r=mr(A_{m \times n}) = r = mr(Am×n)=r=m,则AAA的行向量组线性无关。
(2) 若r(Am×n)=r<mr(A_{m \times n}) = r < mr(Am×n)=r<m,则AAA的行向量组线性相关。
(3) 若r(Am×n)=r=nr(A_{m \times n}) = r = nr(Am×n)=r=n,则AAA的列向量组线性无关。
(4) 若r(Am×n)=r<nr(A_{m \times n}) = r < nr(Am×n)=r<n,则AAA的列向量组线性相关。
5.n\mathbf{n}n维向量空间的基变换公式及过渡矩阵
若α1,α2,⋯ ,αn\alpha_{1},\alpha_{2},\cdots,\alpha_{n}α1,α2,⋯,αn与β1,β2,⋯ ,βn\beta_{1},\beta_{2},\cdots,\beta_{n}β1,β2,⋯,βn是向量空间VVV的两组基,则基变换公式为:
(β1,β2,⋯ ,βn)=(α1,α2,⋯ ,αn)[c11c12⋯c1nc21c22⋯c2n⋯⋯⋯⋯cn1cn2⋯cnn]=(α1,α2,⋯ ,αn)C(\beta_{1},\beta_{2},\cdots,\beta_{n}) = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})\begin{bmatrix} c_{11}& c_{12}& \cdots & c_{1n} \\ c_{21}& c_{22}&\cdots & c_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ c_{n1}& c_{n2} & \cdots & c_{{nn}} \\\end{bmatrix} = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})C(β1,β2,⋯,βn)=(α1,α2,⋯,αn)c11c21⋯cn1c12c22⋯cn2⋯⋯⋯⋯c1nc2n⋯cnn=(α1,α2,⋯,αn)C
其中CCC是可逆矩阵,称为由基α1,α2,⋯ ,αn\alpha_{1},\alpha_{2},\cdots,\alpha_{n}α1,α2,⋯,αn到基β1,β2,⋯ ,βn\beta_{1},\beta_{2},\cdots,\beta_{n}β1,β2,⋯,βn的过渡矩阵。
6.坐标变换公式
若向量γ\gammaγ在基α1,α2,⋯ ,αn\alpha_{1},\alpha_{2},\cdots,\alpha_{n}α1,α2,⋯,αn与基β1,β2,⋯ ,βn\beta_{1},\beta_{2},\cdots,\beta_{n}β1,β2,⋯,βn的坐标分别是
X=(x1,x2,⋯ ,xn)TX = {(x_{1},x_{2},\cdots,x_{n})}^{T}X=(x1,x2,⋯,xn)T,
Y=(y1,y2,⋯ ,yn)TY = \left( y_{1},y_{2},\cdots,y_{n} \right)^{T}Y=(y1,y2,⋯,yn)T 即: γ=x1α1+x2α2+⋯+xnαn=y1β1+y2β2+⋯+ynβn\gamma =x_{1}\alpha_{1} + x_{2}\alpha_{2} + \cdots + x_{n}\alpha_{n} = y_{1}\beta_{1} +y_{2}\beta_{2} + \cdots + y_{n}\beta_{n}γ=x1α1+x2α2+⋯+xnαn=y1β1+y2β2+⋯+ynβn,则向量坐标变换公式为X=CYX = CYX=CY 或Y=C−1XY = C^{- 1}XY=C−1X,其中CCC是从基α1,α2,⋯ ,αn\alpha_{1},\alpha_{2},\cdots,\alpha_{n}α1,α2,⋯,αn到基β1,β2,⋯ ,βn\beta_{1},\beta_{2},\cdots,\beta_{n}β1,β2,⋯,βn的过渡矩阵。
7.向量的内积
(α,β)=a1b1+a2b2+⋯+anbn=αTβ=βTα(\alpha,\beta) = a_{1}b_{1} + a_{2}b_{2} + \cdots + a_{n}b_{n} = \alpha^{T}\beta = \beta^{T}\alpha(α,β)=a1b1+a2b2+⋯+anbn=αTβ=βTα
8.Schmidt正交化
若α1,α2,⋯ ,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1,α2,⋯,αs线性无关,则可构造β1,β2,⋯ ,βs\beta_{1},\beta_{2},\cdots,\beta_{s}β1,β2,⋯,βs使其两两正交,且βi\beta_{i}βi仅是α1,α2,⋯ ,αi\alpha_{1},\alpha_{2},\cdots,\alpha_{i}α1,α2,⋯,αi的线性组合(i=1,2,⋯ ,n)(i= 1,2,\cdots,n)(i=1,2,⋯,n),再把βi\beta_{i}βi单位化,记γi=βi∣βi∣\gamma_{i} =\frac{\beta_{i}}{\left| \beta_{i}\right|}γi=∣βi∣βi,则γ1,γ2,⋯ ,γi\gamma_{1},\gamma_{2},\cdots,\gamma_{i}γ1,γ2,⋯,γi是规范正交向量组。其中
β1=α1\beta_{1} = \alpha_{1}β1=α1, β2=α2−(α2,β1)(β1,β1)β1\beta_{2} = \alpha_{2} -\frac{(\alpha_{2},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1}β2=α2−(β1,β1)(α2,β1)β1 , β3=α3−(α3,β1)(β1,β1)β1−(α3,β2)(β2,β2)β2\beta_{3} =\alpha_{3} - \frac{(\alpha_{3},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} -\frac{(\alpha_{3},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2}β3=α3−(β1,β1)(α3,β1)β1−(β2,β2)(α3,β2)β2 ,
…
βs=αs−(αs,β1)(β1,β1)β1−(αs,β2)(β2,β2)β2−⋯−(αs,βs−1)(βs−1,βs−1)βs−1\beta_{s} = \alpha_{s} - \frac{(\alpha_{s},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} - \frac{(\alpha_{s},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2} - \cdots - \frac{(\alpha_{s},\beta_{s - 1})}{(\beta_{s - 1},\beta_{s - 1})}\beta_{s - 1}βs=αs−(β1,β1)(αs,β1)β1−(β2,β2)(αs,β2)β2−⋯−(βs−1,βs−1)(αs,βs−1)βs−1
9.正交基及规范正交基
向量空间一组基中的向量如果两两正交,就称为正交基;若正交基中每个向量都是单位向量,就称其为规范正交基。