概率论部分
随机事件和概率
1.事件的关系与运算
(1) 子事件:A⊂BA \subset BA⊂B,若AAA发生,则BBB发生。
(2) 相等事件:A=BA = BA=B,即A⊂BA \subset BA⊂B,且B⊂AB \subset AB⊂A 。
(3) 和事件:A⋃BA\bigcup BA⋃B(或A+BA + BA+B),AAA与BBB中至少有一个发生。
(4) 差事件:A−BA - BA−B,AAA发生但BBB不发生。
(5) 积事件:A⋂BA\bigcap BA⋂B(或AB{AB}AB),AAA与BBB同时发生。
(6) 互斥事件(互不相容):A⋂BA\bigcap BA⋂B=∅\varnothing∅。
(7) 互逆事件(对立事件):
A⋂B=∅,A⋃B=Ω,A=Bˉ,B=AˉA\bigcap B=\varnothing ,A\bigcup B=\Omega ,A=\bar{B},B=\bar{A}A⋂B=∅,A⋃B=Ω,A=Bˉ,B=Aˉ
2.运算律
(1) 交换律:A⋃B=B⋃A,A⋂B=B⋂AA\bigcup B=B\bigcup A,A\bigcap B=B\bigcap AA⋃B=B⋃A,A⋂B=B⋂A
(2) 结合律:(A⋃B)⋃C=A⋃(B⋃C)(A\bigcup B)\bigcup C=A\bigcup (B\bigcup C)(A⋃B)⋃C=A⋃(B⋃C)
(3) 分配律:(A⋂B)⋂C=A⋂(B⋂C)(A\bigcap B)\bigcap C=A\bigcap (B\bigcap C)(A⋂B)⋂C=A⋂(B⋂C)
3.德⋅\centerdot⋅摩根律
A⋃B‾=Aˉ⋂Bˉ\overline{A\bigcup B}=\bar{A}\bigcap \bar{B}A⋃B=Aˉ⋂Bˉ A⋂B‾=Aˉ⋃Bˉ\overline{A\bigcap B}=\bar{A}\bigcup \bar{B}A⋂B=Aˉ⋃Bˉ
4.完全事件组
A1A2⋯An{{A}_{1}}{{A}_{2}}\cdots {{A}_{n}}A1A2⋯An两两互斥,且和事件为必然事件,即
Ai⋂Aj=∅,i≠j,⋃ni=1=Ω
{A_{i}}\bigcap {A_{j}}=\varnothing, i\ne j , \underset{i=1}{\overset{n}{\mathop{\bigcup}}}=\Omega
Ai⋂Aj=∅,i=j,i=1⋃n=Ω
5.概率的基本公式
(1)条件概率:
P(B∣A)=P(AB)P(A)P(B|A)=\frac{P(AB)}{P(A)}P(B∣A)=P(A)P(AB),表示AAA发生的条件下,BBB发生的概率。
(2)全概率公式:
P(A)=∑i=1nP(A∣Bi)P(Bi),BiBj=∅,i≠j,⋃ni=1 Bi=ΩP(A)=\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}}),{{B}_{i}}{{B}_{j}}}=\varnothing ,i\ne j,\underset{i=1}{\overset{n}{\mathop{\bigcup }}}\,{{B}_{i}}=\OmegaP(A)=i=1∑nP(A∣Bi)P(Bi),BiBj=∅,i=j,i=1⋃nBi=Ω
(3) Bayes公式:
P(Bj∣A)=P(A∣Bj)P(Bj)∑i=1nP(A∣Bi)P(Bi),j=1,2,⋯ ,nP({{B}_{j}}|A)=\frac{P(A|{{B}_{j}})P({{B}_{j}})}{\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}})}},j=1,2,\cdots ,nP(Bj∣A)=i=1∑nP(A∣Bi)P(Bi)P(A∣Bj)P(Bj),j=1,2,⋯,n
注:上述公式中事件Bi{{B}_{i}}Bi的个数可为可列个。
(4)乘法公式:
P(A1A2)=P(A1)P(A2∣A1)=P(A2)P(A1∣A2)P({{A}_{1}}{{A}_{2}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})=P({{A}_{2}})P({{A}_{1}}|{{A}_{2}})P(A1A2)=P(A1)P(A2∣A1)=P(A2)P(A1∣A2)
P(A1A2⋯An)=P(A1)P(A2∣A1)P(A3∣A1A2)⋯P(An∣A1A2⋯An−1)P({{A}_{1}}{{A}_{2}}\cdots {{A}_{n}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})P({{A}_{3}}|{{A}_{1}}{{A}_{2}})\cdots P({{A}_{n}}|{{A}_{1}}{{A}_{2}}\cdots {{A}_{n-1}})P(A1A2⋯An)=P(A1)P(A2∣A1)P(A3∣A1A2)⋯P(An∣A1A2⋯An−1)
6.事件的独立性
(1)AAA与BBB相互独立⇔P(AB)=P(A)P(B)\Leftrightarrow P(AB)=P(A)P(B)⇔P(AB)=P(A)P(B)
(2)AAA,BBB,CCC两两独立
⇔P(AB)=P(A)P(B)\Leftrightarrow P(AB)=P(A)P(B)⇔P(AB)=P(A)P(B);P(BC)=P(B)P(C)P(BC)=P(B)P(C)P(BC)=P(B)P(C) ;P(AC)=P(A)P(C)P(AC)=P(A)P(C)P(AC)=P(A)P(C);
(3)AAA,BBB,CCC相互独立
⇔P(AB)=P(A)P(B)\Leftrightarrow P(AB)=P(A)P(B)⇔P(AB)=P(A)P(B); P(BC)=P(B)P(C)P(BC)=P(B)P(C)P(BC)=P(B)P(C) ;
P(AC)=P(A)P(C)P(AC)=P(A)P(C)P(AC)=P(A)P(C) ; P(ABC)=P(A)P(B)P(C)P(ABC)=P(A)P(B)P(C)P(ABC)=P(A)P(B)P(C)
7.独立重复试验 (二项分布)
将某试验独立重复nnn次,若每次实验中事件A发生的概率为ppp,则nnn次试验中AAA发生kkk次的概率为:
P(X=k)=Cnkpk(1−p)n−kP(X=k)=C_{n}^{k}{{p}^{k}}{{(1-p)}^{n-k}}P(X=k)=Cnkpk(1−p)n−k
8.重要公式与结论
(1)P(Aˉ)=1−P(A)(1)P(\bar{A})=1-P(A)(1)P(Aˉ)=1−P(A)
(2)P(A⋃B)=P(A)+P(B)−P(AB)(2)P(A\bigcup B)=P(A)+P(B)-P(AB)(2)P(A⋃B)=P(A)+P(B)−P(AB)
P(A⋃B⋃C)=P(A)+P(B)+P(C)−P(AB)−P(BC)−P(AC)+P(ABC)P(A\bigcup B\bigcup C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)P(A⋃B⋃C)=P(A)+P(B)+P(C)−P(AB)−P(BC)−P(AC)+P(ABC)
(3)P(A−B)=P(A)−P(AB)(3)P(A-B)=P(A)-P(AB)(3)P(A−B)=P(A)−P(AB)
(4)P(ABˉ)=P(A)−P(AB),P(A)=P(AB)+P(ABˉ),(4)P(A\bar{B})=P(A)-P(AB),P(A)=P(AB)+P(A\bar{B}),(4)P(ABˉ)=P(A)−P(AB),P(A)=P(AB)+P(ABˉ),
P(A⋃B)=P(A)+P(AˉB)=P(AB)+P(ABˉ)+P(AˉB)P(A\bigcup B)=P(A)+P(\bar{A}B)=P(AB)+P(A\bar{B})+P(\bar{A}B)P(A⋃B)=P(A)+P(AˉB)=P(AB)+P(ABˉ)+P(AˉB)
(5)条件概率P(⋅∣B)P(\centerdot |B)P(⋅∣B)满足概率的所有性质,
例如:. P(Aˉ1∣B)=1−P(A1∣B)P({{\bar{A}}_{1}}|B)=1-P({{A}_{1}}|B)P(Aˉ1∣B)=1−P(A1∣B)
P(A1⋃A2∣B)=P(A1∣B)+P(A2∣B)−P(A1A2∣B)P({{A}_{1}}\bigcup {{A}_{2}}|B)=P({{A}_{1}}|B)+P({{A}_{2}}|B)-P({{A}_{1}}{{A}_{2}}|B)P(A1⋃A2∣B)=P(A1∣B)+P(A2∣B)−P(A1A2∣B)
P(A1A2∣B)=P(A1∣B)P(A2∣A1B)P({{A}_{1}}{{A}_{2}}|B)=P({{A}_{1}}|B)P({{A}_{2}}|{{A}_{1}}B)P(A1A2∣B)=P(A1∣B)P(A2∣A1B)
(6)若A1,A2,⋯ ,An{{A}_{1}},{{A}_{2}},\cdots ,{{A}_{n}}A1,A2,⋯,An相互独立,则P(⋂i=1nAi)=∏i=1nP(Ai),P(\bigcap\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{P({{A}_{i}})},P(i=1⋂nAi)=i=1∏nP(Ai),
P(⋃i=1nAi)=∏i=1n(1−P(Ai))P(\bigcup\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{(1-P({{A}_{i}}))}P(i=1⋃nAi)=i=1∏n(1−P(Ai))
(7)互斥、互逆与独立性之间的关系:
AAA与BBB互逆⇒\Rightarrow⇒ AAA与BBB互斥,但反之不成立,AAA与BBB互斥(或互逆)且均非零概率事件⇒\Rightarrow⇒AAA与BBB不独立.
(8)若A1,A2,⋯ ,Am,B1,B2,⋯ ,Bn{{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}},{{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}}A1,A2,⋯,Am,B1,B2,⋯,Bn相互独立,则f(A1,A2,⋯ ,Am)f({{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}})f(A1,A2,⋯,Am)与g(B1,B2,⋯ ,Bn)g({{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}})g(B1,B2,⋯,Bn)也相互独立,其中f(⋅),g(⋅)f(\centerdot ),g(\centerdot )f(⋅),g(⋅)分别表示对相应事件做任意事件运算后所得的事件,另外,概率为1(或0)的事件与任何事件相互独立.
随机变量及其概率分布
1.随机变量及概率分布
取值带有随机性的变量,严格地说是定义在样本空间上,取值于实数的函数称为随机变量,概率分布通常指分布函数或分布律
2.分布函数的概念与性质
定义: F(x)=P(X≤x),−∞<x<+∞F(x) = P(X \leq x), - \infty < x < + \inftyF(x)=P(X≤x),−∞<x<+∞
性质:(1)0≤F(x)≤10 \leq F(x) \leq 10≤F(x)≤1
(2) F(x)F(x)F(x)单调不减
(3) 右连续F(x+0)=F(x)F(x + 0) = F(x)F(x+0)=F(x)
(4) F(−∞)=0,F(+∞)=1F( - \infty) = 0,F( + \infty) = 1F(−∞)=0,F(+∞)=1
3.离散型随机变量的概率分布
P(X=xi)=pi,i=1,2,⋯ ,n,⋯pi≥0,∑i=1∞pi=1P(X = x_{i}) = p_{i},i = 1,2,\cdots,n,\cdots\quad\quad p_{i} \geq 0,\sum_{i =1}^{\infty}p_{i} = 1P(X=xi)=pi,i=1,2,⋯,n,⋯pi≥0,∑i=1∞pi=1
4.连续型随机变量的概率密度
概率密度f(x)f(x)f(x);非负可积,且:
(1)f(x)≥0,f(x) \geq 0,f(x)≥0,
(2)∫−∞+∞f(x)dx=1\int_{- \infty}^{+\infty}{f(x){dx} = 1}∫−∞+∞f(x)dx=1
(3)xxx为f(x)f(x)f(x)的连续点,则:
f(x)=F′(x)f(x) = F'(x)f(x)=F′(x)分布函数F(x)=∫−∞xf(t)dtF(x) = \int_{- \infty}^{x}{f(t){dt}}F(x)=∫−∞xf(t)dt
5.常见分布
(1) 0-1分布:P(X=k)=pk(1−p)1−k,k=0,1P(X = k) = p^{k}{(1 - p)}^{1 - k},k = 0,1P(X=k)=pk(1−p)1−k,k=0,1
(2) 二项分布:B(n,p)B(n,p)B(n,p): P(X=k)=Cnkpk(1−p)n−k,k=0,1,⋯ ,nP(X = k) = C_{n}^{k}p^{k}{(1 - p)}^{n - k},k =0,1,\cdots,nP(X=k)=Cnkpk(1−p)n−k,k=0,1,⋯,n
(3) Poisson分布:p(λ)p(\lambda)p(λ): P(X=k)=λkk!e−λ,λ>0,k=0,1,2⋯P(X = k) = \frac{\lambda^{k}}{k!}e^{-\lambda},\lambda > 0,k = 0,1,2\cdotsP(X=k)=k!λke−λ,λ>0,k=0,1,2⋯
(4) 均匀分布U(a,b)U(a,b)U(a,b):f(x)={1b−a,a<x<b0,f(x) = \{ \begin{matrix} & \frac{1}{b - a},a < x< b \\ & 0, \\ \end{matrix}f(x)={b−a1,a<x<b0,
(5) 正态分布:N(μ,σ2):N(\mu,\sigma^{2}):N(μ,σ2): φ(x)=12πσe−(x−μ)22σ2,σ>0,∞<x<+∞\varphi(x) =\frac{1}{\sqrt{2\pi}\sigma}e^{- \frac{{(x - \mu)}^{2}}{2\sigma^{2}}},\sigma > 0,\infty < x < + \inftyφ(x)=2πσ1e−2σ2(x−μ)2,σ>0,∞<x<+∞
(6)指数分布:E(λ):f(x)={λe−λx,x>0,λ>00,E(\lambda):f(x) =\{ \begin{matrix} & \lambda e^{-{λx}},x > 0,\lambda > 0 \\ & 0, \\ \end{matrix}E(λ):f(x)={λe−λx,x>0,λ>00,
(7)几何分布:G(p):P(X=k)=(1−p)k−1p,0<p<1,k=1,2,⋯ .G(p):P(X = k) = {(1 - p)}^{k - 1}p,0 < p < 1,k = 1,2,\cdots.G(p):P(X=k)=(1−p)k−1p,0<p<1,k=1,2,⋯.
(8)超几何分布: H(N,M,n):P(X=k)=CMkCN−Mn−kCNn,k=0,1,⋯ ,min(n,M)H(N,M,n):P(X = k) = \frac{C_{M}^{k}C_{N - M}^{n -k}}{C_{N}^{n}},k =0,1,\cdots,min(n,M)H(N,M,n):P(X=k)=CNnCMkCN−Mn−k,k=0,1,⋯,min(n,M)
6.随机变量函数的概率分布
(1)离散型:P(X=x1)=pi,Y=g(X)P(X = x_{1}) = p_{i},Y = g(X)P(X=x1)=pi,Y=g(X)
则: P(Y=yj)=∑g(xi)=yiP(X=xi)P(Y = y_{j}) = \sum_{g(x_{i}) = y_{i}}^{}{P(X = x_{i})}P(Y=yj)=∑g(xi)=yiP(X=xi)
(2)连续型:X ~fX(x),Y=g(x)X\tilde{\ }f_{X}(x),Y = g(x)X ~fX(x),Y=g(x)
则:Fy(y)=P(Y≤y)=P(g(X)≤y)=∫g(x)≤yfx(x)dxF_{y}(y) = P(Y \leq y) = P(g(X) \leq y) = \int_{g(x) \leq y}^{}{f_{x}(x)dx}Fy(y)=P(Y≤y)=P(g(X)≤y)=∫g(x)≤yfx(x)dx, fY(y)=FY′(y)f_{Y}(y) = F'_{Y}(y)fY(y)=FY′(y)
7.重要公式与结论
(1) X∼N(0,1)⇒φ(0)=12π,Φ(0)=12,X\sim N(0,1) \Rightarrow \varphi(0) = \frac{1}{\sqrt{2\pi}},\Phi(0) =\frac{1}{2},X∼N(0,1)⇒φ(0)=2π1,Φ(0)=21, Φ(−a)=P(X≤−a)=1−Φ(a)\Phi( - a) = P(X \leq - a) = 1 - \Phi(a)Φ(−a)=P(X≤−a)=1−Φ(a)
(2) X∼N(μ,σ2)⇒X−μσ∼N(0,1),P(X≤a)=Φ(a−μσ)X\sim N\left( \mu,\sigma^{2} \right) \Rightarrow \frac{X -\mu}{\sigma}\sim N\left( 0,1 \right),P(X \leq a) = \Phi(\frac{a -\mu}{\sigma})X∼N(μ,σ2)⇒σX−μ∼N(0,1),P(X≤a)=Φ(σa−μ)
(3) X∼E(λ)⇒P(X>s+t∣X>s)=P(X>t)X\sim E(\lambda) \Rightarrow P(X > s + t|X > s) = P(X > t)X∼E(λ)⇒P(X>s+t∣X>s)=P(X>t)
(4) X∼G(p)⇒P(X=m+k∣X>m)=P(X=k)X\sim G(p) \Rightarrow P(X = m + k|X > m) = P(X = k)X∼G(p)⇒P(X=m+k∣X>m)=P(X=k)
(5) 离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数。
(6) 存在既非离散也非连续型随机变量。
多维随机变量及其分布
1.二维随机变量及其联合分布
由两个随机变量构成的随机向量(X,Y)(X,Y)(X,Y), 联合分布为F(x,y)=P(X≤x,Y≤y)F(x,y) = P(X \leq x,Y \leq y)F(x,y)=P(X≤x,Y≤y)
2.二维离散型随机变量的分布
(1) 联合概率分布律 P{X=xi,Y=yj}=pij;i,j=1,2,⋯P\{ X = x_{i},Y = y_{j}\} = p_{{ij}};i,j =1,2,\cdotsP{X=xi,Y=yj}=pij;i,j=1,2,⋯
(2) 边缘分布律 pi⋅=∑j=1∞pij,i=1,2,⋯p_{i \cdot} = \sum_{j = 1}^{\infty}p_{{ij}},i =1,2,\cdotspi⋅=∑j=1∞pij,i=1,2,⋯ p⋅j=∑i∞pij,j=1,2,⋯p_{\cdot j} = \sum_{i}^{\infty}p_{{ij}},j = 1,2,\cdotsp⋅j=∑i∞pij,j=1,2,⋯
(3) 条件分布律 P{X=xi∣Y=yj}=pijp⋅jP\{ X = x_{i}|Y = y_{j}\} = \frac{p_{{ij}}}{p_{\cdot j}}P{X=xi∣Y=yj}=p⋅jpij
P{Y=yj∣X=xi}=pijpi⋅P\{ Y = y_{j}|X = x_{i}\} = \frac{p_{{ij}}}{p_{i \cdot}}P{Y=yj∣X=xi}=pi⋅pij
3. 二维连续性随机变量的密度
(1) 联合概率密度f(x,y):f(x,y):f(x,y):
-
f(x,y)≥0f(x,y) \geq 0f(x,y)≥0
-
∫−∞+∞∫−∞+∞f(x,y)dxdy=1\int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{f(x,y)dxdy}} = 1∫−∞+∞∫−∞+∞f(x,y)dxdy=1
(2) 分布函数:F(x,y)=∫−∞x∫−∞yf(u,v)dudvF(x,y) = \int_{- \infty}^{x}{\int_{- \infty}^{y}{f(u,v)dudv}}F(x,y)=∫−∞x∫−∞yf(u,v)dudv
(3) 边缘概率密度: fX(x)=∫−∞+∞f(x,y)dyf_{X}\left( x \right) = \int_{- \infty}^{+ \infty}{f\left( x,y \right){dy}}fX(x)=∫−∞+∞f(x,y)dy fY(y)=∫−∞+∞f(x,y)dxf_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}fY(y)=∫−∞+∞f(x,y)dx
(4) 条件概率密度:fX∣Y(x|y)=f(x,y)fY(y)f_{X|Y}\left( x \middle| y \right) = \frac{f\left( x,y \right)}{f_{Y}\left( y \right)}fX∣Y(x∣y)=fY(y)f(x,y) fY∣X(y∣x)=f(x,y)fX(x)f_{Y|X}(y|x) = \frac{f(x,y)}{f_{X}(x)}fY∣X(y∣x)=fX(x)f(x,y)
4.常见二维随机变量的联合分布
(1) 二维均匀分布:(x,y)∼U(D)(x,y) \sim U(D)(x,y)∼U(D) ,f(x,y)={1S(D),(x,y)∈D0,其他f(x,y) = \begin{cases} \frac{1}{S(D)},(x,y) \in D \\ 0,其他 \end{cases}f(x,y)={S(D)1,(x,y)∈D0,其他
(2) 二维正态分布:(X,Y)∼N(μ1,μ2,σ12,σ22,ρ)(X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)(X,Y)∼N(μ1,μ2,σ12,σ22,ρ),(X,Y)∼N(μ1,μ2,σ12,σ22,ρ)(X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)(X,Y)∼N(μ1,μ2,σ12,σ22,ρ)
f(x,y)=12πσ1σ21−ρ2.exp{−12(1−ρ2)[(x−μ1)2σ12−2ρ(x−μ1)(y−μ2)σ1σ2+(y−μ2)2σ22]}f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1 - \rho^{2}}}.\exp\left\{ \frac{- 1}{2(1 - \rho^{2})}\lbrack\frac{{(x - \mu_{1})}^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x - \mu_{1})(y - \mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{{(y - \mu_{2})}^{2}}{\sigma_{2}^{2}}\rbrack \right\}f(x,y)=2πσ1σ21−ρ21.exp{2(1−ρ2)−1[σ12(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ22(y−μ2)2]}
5.随机变量的独立性和相关性
XXX和YYY的相互独立:⇔F(x,y)=FX(x)FY(y)\Leftrightarrow F\left( x,y \right) = F_{X}\left( x \right)F_{Y}\left( y \right)⇔F(x,y)=FX(x)FY(y):
⇔pij=pi⋅⋅p⋅j\Leftrightarrow p_{{ij}} = p_{i \cdot} \cdot p_{\cdot j}⇔pij=pi⋅⋅p⋅j(离散型)
⇔f(x,y)=fX(x)fY(y)\Leftrightarrow f\left( x,y \right) = f_{X}\left( x \right)f_{Y}\left( y \right)⇔f(x,y)=fX(x)fY(y)(连续型)
XXX和YYY的相关性:
相关系数ρXY=0\rho_{{XY}} = 0ρXY=0时,称XXX和YYY不相关,
否则称XXX和YYY相关
6.两个随机变量简单函数的概率分布
离散型: P(X=xi,Y=yi)=pij,Z=g(X,Y)P\left( X = x_{i},Y = y_{i} \right) = p_{{ij}},Z = g\left( X,Y \right)P(X=xi,Y=yi)=pij,Z=g(X,Y) 则:
P(Z=zk)=P{g(X,Y)=zk}=∑g(xi,yi)=zkP(X=xi,Y=yj)P(Z = z_{k}) = P\left\{ g\left( X,Y \right) = z_{k} \right\} = \sum_{g\left( x_{i},y_{i} \right) = z_{k}}^{}{P\left( X = x_{i},Y = y_{j} \right)}P(Z=zk)=P{g(X,Y)=zk}=∑g(xi,yi)=zkP(X=xi,Y=yj)
连续型: (X,Y)∼f(x,y),Z=g(X,Y)\left( X,Y \right) \sim f\left( x,y \right),Z = g\left( X,Y \right)(X,Y)∼f(x,y),Z=g(X,Y)
则:
Fz(z)=P{g(X,Y)≤z}=∬g(x,y)≤zf(x,y)dxdyF_{z}\left( z \right) = P\left\{ g\left( X,Y \right) \leq z \right\} = \iint_{g(x,y) \leq z}^{}{f(x,y)dxdy}Fz(z)=P{g(X,Y)≤z}=∬g(x,y)≤zf(x,y)dxdy,fz(z)=Fz′(z)f_{z}(z) = F'_{z}(z)fz(z)=Fz′(z)
7.重要公式与结论
(1) 边缘密度公式: fX(x)=∫−∞+∞f(x,y)dy,f_{X}(x) = \int_{- \infty}^{+ \infty}{f(x,y)dy,}fX(x)=∫−∞+∞f(x,y)dy,
fY(y)=∫−∞+∞f(x,y)dxf_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}fY(y)=∫−∞+∞f(x,y)dx
(2) P{(X,Y)∈D}=∬Df(x,y)dxdyP\left\{ \left( X,Y \right) \in D \right\} = \iint_{D}^{}{f\left( x,y \right){dxdy}}P{(X,Y)∈D}=∬Df(x,y)dxdy
(3) 若(X,Y)(X,Y)(X,Y)服从二维正态分布N(μ1,μ2,σ12,σ22,ρ)N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)N(μ1,μ2,σ12,σ22,ρ)
则有:
-
X∼N(μ1,σ12),Y∼N(μ2,σ22).X\sim N\left( \mu_{1},\sigma_{1}^{2} \right),Y\sim N(\mu_{2},\sigma_{2}^{2}).X∼N(μ1,σ12),Y∼N(μ2,σ22).
-
XXX与YYY相互独立⇔ρ=0\Leftrightarrow \rho = 0⇔ρ=0,即XXX与YYY不相关。
-
C1X+C2Y∼N(C1μ1+C2μ2,C12σ12+C22σ22+2C1C2σ1σ2ρ)C_{1}X + C_{2}Y\sim N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} + C_{2}^{2}\sigma_{2}^{2} + 2C_{1}C_{2}\sigma_{1}\sigma_{2}\rho)C1X+C2Y∼N(C1μ1+C2μ2,C12σ12+C22σ22+2C1C2σ1σ2ρ)
-
X{\ X} X关于Y=yY=yY=y的条件分布为: N(μ1+ρσ1σ2(y−μ2),σ12(1−ρ2))N(\mu_{1} + \rho\frac{\sigma_{1}}{\sigma_{2}}(y - \mu_{2}),\sigma_{1}^{2}(1 - \rho^{2}))N(μ1+ρσ2σ1(y−μ2),σ12(1−ρ2))
-
YYY关于X=xX = xX=x的条件分布为: N(μ2+ρσ2σ1(x−μ1),σ22(1−ρ2))N(\mu_{2} + \rho\frac{\sigma_{2}}{\sigma_{1}}(x - \mu_{1}),\sigma_{2}^{2}(1 - \rho^{2}))N(μ2+ρσ1σ2(x−μ1),σ22(1−ρ2))
(4) 若XXX与YYY独立,且分别服从N(μ1,σ12),N(μ1,σ22),N(\mu_{1},\sigma_{1}^{2}),N(\mu_{1},\sigma_{2}^{2}),N(μ1,σ12),N(μ1,σ22),
则:(X,Y)∼N(μ1,μ2,σ12,σ22,0),\left( X,Y \right)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},0),(X,Y)∼N(μ1,μ2,σ12,σ22,0),
C1X+C2Y ~N(C1μ1+C2μ2,C12σ12C22σ22).C_{1}X + C_{2}Y\tilde{\ }N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} C_{2}^{2}\sigma_{2}^{2}).C1X+C2Y ~N(C1μ1+C2μ2,C12σ12C22σ22).
(5) 若XXX与YYY相互独立,f(x)f\left( x \right)f(x)和g(x)g\left( x \right)g(x)为连续函数, 则f(X)f\left( X \right)f(X)和g(Y)g(Y)g(Y)也相互独立。
随机变量的数字特征
1.数学期望
离散型:P{X=xi}=pi,E(X)=∑ixipiP\left\{ X = x_{i} \right\} = p_{i},E(X) = \sum_{i}^{}{x_{i}p_{i}}P{X=xi}=pi,E(X)=∑ixipi;
连续型: X∼f(x),E(X)=∫−∞+∞xf(x)dxX\sim f(x),E(X) = \int_{- \infty}^{+ \infty}{xf(x)dx}X∼f(x),E(X)=∫−∞+∞xf(x)dx
性质:
(1) E(C)=C,E[E(X)]=E(X)E(C) = C,E\lbrack E(X)\rbrack = E(X)E(C)=C,E[E(X)]=E(X)
(2) E(C1X+C2Y)=C1E(X)+C2E(Y)E(C_{1}X + C_{2}Y) = C_{1}E(X) + C_{2}E(Y)E(C1X+C2Y)=C1E(X)+C2E(Y)
(3) 若XXX和YYY独立,则E(XY)=E(X)E(Y)E(XY) = E(X)E(Y)E(XY)=E(X)E(Y)
(4)[E(XY)]2≤E(X2)E(Y2)\left\lbrack E(XY) \right\rbrack^{2} \leq E(X^{2})E(Y^{2})[E(XY)]2≤E(X2)E(Y2)
2.方差:D(X)=E[X−E(X)]2=E(X2)−[E(X)]2D(X) = E\left\lbrack X - E(X) \right\rbrack^{2} = E(X^{2}) - \left\lbrack E(X) \right\rbrack^{2}D(X)=E[X−E(X)]2=E(X2)−[E(X)]2
3.标准差:D(X)\sqrt{D(X)}D(X),
4.离散型:D(X)=∑i[xi−E(X)]2piD(X) = \sum_{i}^{}{\left\lbrack x_{i} - E(X) \right\rbrack^{2}p_{i}}D(X)=∑i[xi−E(X)]2pi
5.连续型:D(X)=∫−∞+∞[x−E(X)]2f(x)dxD(X) = {\int_{- \infty}^{+ \infty}\left\lbrack x - E(X) \right\rbrack}^{2}f(x)dxD(X)=∫−∞+∞[x−E(X)]2f(x)dx
性质:
(1) D(C)=0,D[E(X)]=0,D[D(X)]=0\ D(C) = 0,D\lbrack E(X)\rbrack = 0,D\lbrack D(X)\rbrack = 0 D(C)=0,D[E(X)]=0,D[D(X)]=0
(2) XXX与YYY相互独立,则D(X±Y)=D(X)+D(Y)D(X \pm Y) = D(X) + D(Y)D(X±Y)=D(X)+D(Y)
(3) D(C1X+C2)=C12D(X)\ D\left( C_{1}X + C_{2} \right) = C_{1}^{2}D\left( X \right) D(C1X+C2)=C12D(X)
(4) 一般有 D(X±Y)=D(X)+D(Y)±2Cov(X,Y)=D(X)+D(Y)±2ρD(X)D(Y)D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y) = D(X) + D(Y) \pm 2\rho\sqrt{D(X)}\sqrt{D(Y)}D(X±Y)=D(X)+D(Y)±2Cov(X,Y)=D(X)+D(Y)±2ρD(X)D(Y)
(5) D(X)<E(X−C)2,C≠E(X)\ D\left( X \right) < E\left( X - C \right)^{2},C \neq E\left( X \right) D(X)<E(X−C)2,C=E(X)
(6) D(X)=0⇔P{X=C}=1\ D(X) = 0 \Leftrightarrow P\left\{ X = C \right\} = 1 D(X)=0⇔P{X=C}=1
6.随机变量函数的数学期望
(1) 对于函数Y=g(x)Y = g(x)Y=g(x)
XXX为离散型:P{X=xi}=pi,E(Y)=∑ig(xi)piP\{ X = x_{i}\} = p_{i},E(Y) = \sum_{i}^{}{g(x_{i})p_{i}}P{X=xi}=pi,E(Y)=∑ig(xi)pi;
XXX为连续型:X∼f(x),E(Y)=∫−∞+∞g(x)f(x)dxX\sim f(x),E(Y) = \int_{- \infty}^{+ \infty}{g(x)f(x)dx}X∼f(x),E(Y)=∫−∞+∞g(x)f(x)dx
(2) Z=g(X,Y)Z = g(X,Y)Z=g(X,Y);(X,Y)∼P{X=xi,Y=yj}=pij\left( X,Y \right)\sim P\{ X = x_{i},Y = y_{j}\} = p_{{ij}}(X,Y)∼P{X=xi,Y=yj}=pij; E(Z)=∑i∑jg(xi,yj)pijE(Z) = \sum_{i}^{}{\sum_{j}^{}{g(x_{i},y_{j})p_{{ij}}}}E(Z)=∑i∑jg(xi,yj)pij (X,Y)∼f(x,y)\left( X,Y \right)\sim f(x,y)(X,Y)∼f(x,y);E(Z)=∫−∞+∞∫−∞+∞g(x,y)f(x,y)dxdyE(Z) = \int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{g(x,y)f(x,y)dxdy}}E(Z)=∫−∞+∞∫−∞+∞g(x,y)f(x,y)dxdy
7.协方差
Cov(X,Y)=E[(X−E(X)(Y−E(Y))]Cov(X,Y) = E\left\lbrack (X - E(X)(Y - E(Y)) \right\rbrackCov(X,Y)=E[(X−E(X)(Y−E(Y))]
8.相关系数
ρXY=Cov(X,Y)D(X)D(Y)\rho_{{XY}} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}ρXY=D(X)D(Y)Cov(X,Y),kkk阶原点矩 E(Xk)E(X^{k})E(Xk);
kkk阶中心矩 E{[X−E(X)]k}E\left\{ {\lbrack X - E(X)\rbrack}^{k} \right\}E{[X−E(X)]k}
性质:
(1) Cov(X,Y)=Cov(Y,X)\ Cov(X,Y) = Cov(Y,X) Cov(X,Y)=Cov(Y,X)
(2) Cov(aX,bY)=abCov(Y,X)\ Cov(aX,bY) = abCov(Y,X) Cov(aX,bY)=abCov(Y,X)
(3) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)\ Cov(X_{1} + X_{2},Y) = Cov(X_{1},Y) + Cov(X_{2},Y) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)
(4) ∣ρ(X,Y)∣≤1\ \left| \rho\left( X,Y \right) \right| \leq 1 ∣ρ(X,Y)∣≤1
(5) ρ(X,Y)=1⇔P(Y=aX+b)=1\ \rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1 ρ(X,Y)=1⇔P(Y=aX+b)=1 ,其中a>0a > 0a>0
ρ(X,Y)=−1⇔P(Y=aX+b)=1\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1ρ(X,Y)=−1⇔P(Y=aX+b)=1
,其中a<0a < 0a<0
9.重要公式与结论
(1) D(X)=E(X2)−E2(X)\ D(X) = E(X^{2}) - E^{2}(X) D(X)=E(X2)−E2(X)
(2) Cov(X,Y)=E(XY)−E(X)E(Y)\ Cov(X,Y) = E(XY) - E(X)E(Y) Cov(X,Y)=E(XY)−E(X)E(Y)
(3) ∣ρ(X,Y)∣≤1,\left| \rho\left( X,Y \right) \right| \leq 1,∣ρ(X,Y)∣≤1,且 ρ(X,Y)=1⇔P(Y=aX+b)=1\rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1ρ(X,Y)=1⇔P(Y=aX+b)=1,其中a>0a > 0a>0
ρ(X,Y)=−1⇔P(Y=aX+b)=1\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1ρ(X,Y)=−1⇔P(Y=aX+b)=1,其中a<0a < 0a<0
(4) 下面5个条件互为充要条件:
ρ(X,Y)=0\rho(X,Y) = 0ρ(X,Y)=0 ⇔Cov(X,Y)=0\Leftrightarrow Cov(X,Y) = 0⇔Cov(X,Y)=0 ⇔E(X,Y)=E(X)E(Y)\Leftrightarrow E(X,Y) = E(X)E(Y)⇔E(X,Y)=E(X)E(Y) ⇔D(X+Y)=D(X)+D(Y)\Leftrightarrow D(X + Y) = D(X) + D(Y)⇔D(X+Y)=D(X)+D(Y) ⇔D(X−Y)=D(X)+D(Y)\Leftrightarrow D(X - Y) = D(X) + D(Y)⇔D(X−Y)=D(X)+D(Y)
注:XXX与YYY独立为上述5个条件中任何一个成立的充分条件,但非必要条件。
数理统计部分
数理统计的基本概念
1.基本概念
总体:研究对象的全体,它是一个随机变量,用XXX表示。
个体:组成总体的每个基本元素。
简单随机样本:来自总体XXX的nnn个相互独立且与总体同分布的随机变量X1,X2⋯ ,XnX_{1},X_{2}\cdots,X_{n}X1,X2⋯,Xn,称为容量为nnn的简单随机样本,简称样本。
统计量:设X1,X2⋯ ,Xn,X_{1},X_{2}\cdots,X_{n},X1,X2⋯,Xn,是来自总体XXX的一个样本,g(X1,X2⋯ ,Xn)g(X_{1},X_{2}\cdots,X_{n})g(X1,X2⋯,Xn))是样本的连续函数,且g()g()g()中不含任何未知参数,则称g(X1,X2⋯ ,Xn)g(X_{1},X_{2}\cdots,X_{n})g(X1,X2⋯,Xn)为统计量。
样本均值:X‾=1n∑i=1nXi\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}X=n1∑i=1nXi
样本方差:S2=1n−1∑i=1n(Xi−X‾)2S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{2}S2=n−11∑i=1n(Xi−X)2
样本矩:样本kkk阶原点矩:Ak=1n∑i=1nXik,k=1,2,⋯A_{k} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}^{k},k = 1,2,\cdotsAk=n1∑i=1nXik,k=1,2,⋯
样本kkk阶中心矩:Bk=1n∑i=1n(Xi−X‾)k,k=1,2,⋯B_{k} = \frac{1}{n}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{k},k = 1,2,\cdotsBk=n1∑i=1n(Xi−X)k,k=1,2,⋯
2.三大分布
χ2\chi^{2}χ2分布:χ2=X12+X22+⋯+Xn2∼χ2(n)\chi^{2} = X_{1}^{2} + X_{2}^{2} + \cdots + X_{n}^{2}\sim\chi^{2}(n)χ2=X12+X22+⋯+Xn2∼χ2(n),其中X1,X2⋯ ,Xn,X_{1},X_{2}\cdots,X_{n},X1,X2⋯,Xn,相互独立,且同服从N(0,1)N(0,1)N(0,1)
ttt分布:T=XY/n∼t(n)T = \frac{X}{\sqrt{Y/n}}\sim t(n)T=Y/nX∼t(n) ,其中X∼N(0,1),Y∼χ2(n),X\sim N\left( 0,1 \right),Y\sim\chi^{2}(n),X∼N(0,1),Y∼χ2(n),且XXX,YYY 相互独立。
FFF分布:F=X/n1Y/n2∼F(n1,n2)F = \frac{X/n_{1}}{Y/n_{2}}\sim F(n_{1},n_{2})F=Y/n2X/n1∼F(n1,n2),其中X∼χ2(n1),Y∼χ2(n2),X\sim\chi^{2}\left( n_{1} \right),Y\sim\chi^{2}(n_{2}),X∼χ2(n1),Y∼χ2(n2),且XXX,YYY相互独立。
分位数:若P(X≤xα)=α,P(X \leq x_{\alpha}) = \alpha,P(X≤xα)=α,则称xαx_{\alpha}xα为XXX的α\alphaα分位数
3.正态总体的常用样本分布
(1) 设X1,X2⋯ ,XnX_{1},X_{2}\cdots,X_{n}X1,X2⋯,Xn为来自正态总体N(μ,σ2)N(\mu,\sigma^{2})N(μ,σ2)的样本,
X‾=1n∑i=1nXi,S2=1n−1∑i=1n(Xi−X‾)2,\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i},S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2},}X=n1∑i=1nXi,S2=n−11∑i=1n(Xi−X)2,则:
-
X‾∼N(μ,σ2n) \overline{X}\sim N\left( \mu,\frac{\sigma^{2}}{n} \right){\ \ }X∼N(μ,nσ2) 或者X‾−μσn∼N(0,1)\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1)nσX−μ∼N(0,1)
-
(n−1)S2σ2=1σ2∑i=1n(Xi−X‾)2∼χ2(n−1)\frac{(n - 1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2}\sim\chi^{2}(n - 1)}σ2(n−1)S2=σ21∑i=1n(Xi−X)2∼χ2(n−1)
-
1σ2∑i=1n(Xi−μ)2∼χ2(n)\frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \mu)}^{2}\sim\chi^{2}(n)}σ21∑i=1n(Xi−μ)2∼χ2(n)
4) X‾−μS/n∼t(n−1){\ \ }\frac{\overline{X} - \mu}{S/\sqrt{n}}\sim t(n - 1) S/nX−μ∼t(n−1)
4.重要公式与结论
(1) 对于χ2∼χ2(n)\chi^{2}\sim\chi^{2}(n)χ2∼χ2(n),有E(χ2(n))=n,D(χ2(n))=2n;E(\chi^{2}(n)) = n,D(\chi^{2}(n)) = 2n;E(χ2(n))=n,D(χ2(n))=2n;
(2) 对于T∼t(n)T\sim t(n)T∼t(n),有E(T)=0,D(T)=nn−2(n>2)E(T) = 0,D(T) = \frac{n}{n - 2}(n > 2)E(T)=0,D(T)=n−2n(n>2);
(3) 对于F ~F(m,n)F\tilde{\ }F(m,n)F ~F(m,n),有 1F∼F(n,m),Fa/2(m,n)=1F1−a/2(n,m);\frac{1}{F}\sim F(n,m),F_{a/2}(m,n) = \frac{1}{F_{1 - a/2}(n,m)};F1∼F(n,m),Fa/2(m,n)=F1−a/2(n,m)1;
(4) 对于任意总体XXX,有 E(X‾)=E(X),E(S2)=D(X),D(X‾)=D(X)nE(\overline{X}) = E(X),E(S^{2}) = D(X),D(\overline{X}) = \frac{D(X)}{n}E(X)=E(X),E(S2)=D(X),D(X)=nD(X)
参数估计
- 矩估计和区间估计
- 最大似然估计
假设检验
- 显著性检验
- 正态总体参数检验
- 方差分析