1096 Consecutive Factors

在这里插入图片描述
能够被n整除的最长连续整数乘积,如果没有的话输出概述本身
这个连续整数一定小于等于sqrt(n),则考虑遍历[2, sqrt(n)]内连乘数是否能被n整除

  • for循环中的判断条件换为i*i <= n会有一个测试点超时
#include<stdio.h>
#include<math.h>
int main(){
	int l, r, t, max = -1;
	long long n, multi, sqr;
	scanf("%lld", &n);
	sqr = sqrt(n*1.0);
	for(int i = 2; i <= sqr; i++){
		multi = 1;
		t = i;
		while(1){
			multi *= t;
			if(n % multi != 0) break;
			if(t - i + 1 > max){
				max = t - i + 1;
				l = i;
				r = t;
			}
			t++;
		}
	}
	if(max == -1) printf("1\n%lld", n);
	else{
		printf("%d\n", max);
		for(int i = l; i <= r; i++){
			printf("%d", i);
			if(i != r) printf("*");
		}
	}
	return 0;
}
解释代码内容: def run_backend(cfg, model, states, keyframes, K): set_global_config(cfg) device = keyframes.device factor_graph = FactorGraph(model, keyframes, K, device) retrieval_database = load_retriever(model) mode = states.get_mode() while mode is not Mode.TERMINATED: mode = states.get_mode() if mode == Mode.INIT or states.is_paused(): time.sleep(0.01) continue if mode == Mode.RELOC: frame = states.get_frame() success = relocalization(frame, keyframes, factor_graph, retrieval_database) if success: states.set_mode(Mode.TRACKING) states.dequeue_reloc() continue idx = -1 with states.lock: if len(states.global_optimizer_tasks) > 0: idx = states.global_optimizer_tasks[0] if idx == -1: time.sleep(0.01) continue # Graph Construction kf_idx = [] # k to previous consecutive keyframes n_consec = 1 for j in range(min(n_consec, idx)): kf_idx.append(idx - 1 - j) frame = keyframes[idx] retrieval_inds = retrieval_database.update( frame, add_after_query=True, k=config["retrieval"]["k"], min_thresh=config["retrieval"]["min_thresh"], ) kf_idx += retrieval_inds lc_inds = set(retrieval_inds) lc_inds.discard(idx - 1) if len(lc_inds) > 0: print("Database retrieval", idx, ": ", lc_inds) kf_idx = set(kf_idx) # Remove duplicates by using set kf_idx.discard(idx) # Remove current kf idx if included kf_idx = list(kf_idx) # convert to list frame_idx = [idx] * len(kf_idx) if kf_idx: factor_graph.add_factors( kf_idx, frame_idx, config["local_opt"]["min_match_frac"] ) with states.lock: states.edges_ii[:] = factor_graph.ii.cpu().tolist() states.edges_jj[:] = factor_graph.jj.cpu().tolist() if config["use_calib"]: factor_graph.solve_GN_calib() else: factor_graph.solve_GN_rays() with states.lock: if len(states.global_optimizer_tasks) > 0: idx = states.global_optimizer_tasks.pop(0)
03-17
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值