Review08 [coursera] Machine learning - Stanford University - Andrew Ng

本文探讨了神经网络的学习过程及调试策略,强调了反向传播算法的重要性,并指出在确保代码无误后,应禁用梯度检查以提高计算效率。文章还讨论了使用梯度下降训练神经网络时可能遇到的局部最优解问题,以及如何通过绘制代价函数J(Θ)随迭代次数变化的曲线来检查算法是否正常工作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Neural Networks: Learning

 

For computational efficiency, after we have performed gradient checking to verify that our backpropagation code is correct, we usually disable gradient checking before using backpropagation to train the network.    T

Using gradient checking can help verify if one's implementation of backpropagation is bug-free.    T

Suppose you are training a neural network using gradient descent. Depending on your random initialization, your algorithm may converge to different local optima (i.e., if you run the algorithm twice with different random initializations, gradient descent may converge to two different solutions).    T

If we are training a neural network using gradient descent, one reasonable "debugging" step to make sure it is working is to plot J(Θ) as a function of the number of iterations, and make sure it is decreasing (or at least non-increasing) after each iteration.    T

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值