Ex04 [coursera] Machine learning - Stanford University - Andrew Ng

博客围绕神经网络学习展开,提及了多个相关的文件,如ex4.m、displayData.m等,还包括提示输出、图形输出等内容,同时展示了数据集中的示例以及隐藏单元的可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Neural Networks Learning

目录

Neural Networks Learning

ex4.m

displayData.m

nnCostFunction.m

sigmoidGradient.m

sigmoid.m

randInitializeWeights.m

checkNNGradients.m

debugInitializeWeights.m

computeNumericalGradient.m

predict.m

Prompt Output

Figure Output


ex4.m

%% Machine Learning Online Class - Exercise 4 Neural Network Learning

%  Instructions
%  ------------
% 
%  This file contains code that helps you get started on the
%  linear exercise. You will need to complete the following functions 
%  in this exericse:
%
%     sigmoidGradient.m
%     randInitializeWeights.m
%     nnCostFunction.m
%
%  For this exercise, you will not need to change any code in this file,
%  or any other files other than those mentioned above.
%

%% Initialization
clear ; close all; clc

%% Setup the parameters you will use for this exercise
input_layer_size  = 400;  % 20x20 Input Images of Digits
hidden_layer_size = 25;   % 25 hidden units
num_labels = 10;          % 10 labels, from 1 to 10   
                          % (note that we have mapped "0" to label 10)

%% =========== Part 1: Loading and Visualizing Data =============
%  We start the exercise by first loading and visualizing the dataset. 
%  You will be working with a dataset that contains handwritten digits.
%

% Load Training Data
fprintf('Loading and Visualizing Data ...\n')

load('ex4data1.mat');
m = size(X, 1);

% Randomly select 100 data points to display
sel = randperm(size(X, 1));
sel = sel(1:100);

displayData(X(sel, :));

fprintf('Program paused. Press enter to continue.\n');
pause;


%% ================ Part 2: Loading Parameters ================
% In this part of the exercise, we load some pre-initialized 
% neural network parameters.

fprintf('\nLoading Saved Neural Network Parameters ...\n')

% Load the weights into variables Theta1 and Theta2
load('ex4weights.mat');

% Unroll parameters 
nn_params = [Theta1(:) ; Theta2(:)];

%% ================ Part 3: Compute Cost (Feedforward) ================
%  To the neural network, you should first start by implementing the
%  feedforward part of the neural network that returns the cost only. You
%  should complete the code in nnCostFunction.m to return cost. After
%  implementing the feedforward to compute the cost, you can verify that
%  your implementation is correct by verifying that you get the same cost
%  as us for the fixed debugging parameters.
%
%  We suggest implementing the feedforward cost *without* regularization
%  first so that it will be easier for you to debug. Later, in part 4, you
%  will get to implement the regularized cost.
%
fprintf('\nFeedforward Using Neural Network ...\n')

% Weight regularization parameter (we set this to 0 here).
lambda = 0;

J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
                   num_labels, X, y, lambda);

fprintf(['Cost at parameters (loaded from ex4weights): %f '...
         '\n(this value should be about 0.287629)\n'], J);

fprintf('\nProgram paused. Press enter to continue.\n');
pause;

%% =============== Part 4: Implement Regularization ===============
%  Once your cost function implementation is correct, you should now
%  continue to implement the regularization with the cost.
%

fprintf('\nChecking Cost Function (w/ Regularization) ... \n')

% Weight regularization parameter (we set this to 1 here).
lambda = 1;

J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
                   num_labels, X, y, lambda);

fprintf(['Cost at parameters (loaded from ex4weights): %f '...
         '\n(this value should be about 0.383770)\n'], J);

fprintf('Program paused. Press enter to continue.\n');
pause;


%% ================ Part 5: Sigmoid Gradient  ================
%  Before you start implementing the neural network, you will first
%  implement the gradient for the sigmoid function. You should complete the
%  code in the sigmoidGradient.m file.
%

fprintf('\nEvaluating sigmoid gradient...\n')

g = sigmoidGradient([-1 -0.5 0 0.5 1]);
fprintf('Sigmoid gradient evaluated at [-1 -0.5 0 0.5 1]:\n  ');
fprintf('%f ', g);
fprintf('\n\n');

fprintf('Program paused. Press enter to continue.\n');
pause;


%% ================ Part 6: Initializing Pameters ================
%  In this part of the exercise, you will be starting to implment a two
%  layer neural network that classifies digits. You will start by
%  implementing a function to initialize the weights of the neural network
%  (randInitializeWeights.m)

fprintf('\nInitializing Neural Network Parameters ...\n')

initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size);
initial_Theta2 = randInitializeWeights(hidden_layer_size, num_labels);

% Unroll parameters
initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)];


%% =============== Part 7: Implement Backpropagation ===============
%  Once your cost matches up with ours, you should proceed to implement the
%  backpropagation algorithm for the neural network. You should add to the
%  code you've written in nnCostFunction.m to return the partial
%  derivatives of the parameters.
%
fprintf('\nChecking Backpropagation... \n');

%  Check gradients by running checkNNGradients
checkNNGradients;

fprintf('\nProgram paused. Press enter to continue.\n');
pause;


%% =============== Part 8: Implement Regularization ===============
%  Once your backpropagation implementation is correct, you should now
%  continue to implement the regularization with the cost and gradient.
%

fprintf('\nChecking Backpropagation (w/ Regularization) ... \n')

%  Check gradients by running checkNNGradients
lambda = 3;
checkNNGradients(lambda);

% Also output the costFunction debugging values
debug_J  = nnCostFunction(nn_params, input_layer_size, ...
                          hidden_layer_size, num_labels, X, y, lambda);

fprintf(['\n\nCost at (fixed) debugging parameters (w/ lambda = %f): %f ' ...
         '\n(for lambda = 3, this value should be about 0.576051)\n\n'], lambda, debug_J);

fprintf('Program paused. Press enter to continue.\n');
pause;


%% =================== Part 8: Training NN ===================
%  You have now implemented all the code necessary to train a neural 
%  network. To train your neural network, we will now use "fmincg", which
%  is a function which works similarly to "fminunc". Recall that these
%  advanced optimizers are able to train our cost functions efficiently as
%  long as we provide them with the gradient computations.
%
fprintf('\nTraining Neural Network... \n')

%  After you have completed the assignment, change the MaxIter to a larger
%  value to see how more training helps.
options = optimset('MaxIter', 50);

%  You should also try different values of lambda
lambda = 1;

% Create "short hand" for the cost function to be minimized
costFunction = @(p) nnCostFunction(p, ...
                                   input_layer_size, ...
                                   hidden_layer_size, ...
                                   num_labels, X, y, lambda);

% Now, costFunction is a function that takes in only one argument (the
% neural network parameters)
[nn_params, cost] = fmincg(costFunction, initial_nn_params, options);

% Obtain Theta1 and Theta2 back from nn_params
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                 hidden_layer_size, (input_layer_size + 1));

Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                 num_labels, (hidden_layer_size + 1));

fprintf('Program paused. Press enter to continue.\n');
pause;


%% ================= Part 9: Visualize Weights =================
%  You can now "visualize" what the neural network is learning by 
%  displaying the hidden units to see what features they are capturing in 
%  the data.

fprintf('\nVisualizing Neural Network... \n')

displayData(Theta1(:, 2:end));

fprintf('\nProgram paused. Press enter to continue.\n');
pause;

%% ================= Part 10: Implement Predict =================
%  After training the neural network, we would like to use it to predict
%  the labels. You will now implement the "predict" function to use the
%  neural network to predict the labels of the training set. This lets
%  you compute the training set accuracy.

pred = predict(Theta1, Theta2, X);

fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);


displayData.m

function [h, display_array] = displayData(X, example_width)
%DISPLAYDATA Display 2D data in a nice grid
%   [h, display_array] = DISPLAYDATA(X, example_width) displays 2D data
%   stored in X in a nice grid. It returns the figure handle h and the 
%   displayed array if requested.

% Set example_width automatically if not passed in
if ~exist('example_width', 'var') || isempty(example_width) 
	example_width = round(sqrt(size(X, 2)));
end

% Gray Image
colormap(gray);

% Compute rows, cols
[m n] = size(X);
example_height = (n / example_width);

% Compute number of items to display
display_rows = floor(sqrt(m));
display_cols = ceil(m / display_rows);

% Between images padding
pad = 1;

% Setup blank display
display_array = - ones(pad + display_rows * (example_height + pad), ...
                       pad + display_cols * (example_width + pad));

% Copy each example into a patch on the display array
curr_ex = 1;
for j = 1:display_rows
	for i = 1:display_cols
		if curr_ex > m, 
			break; 
		end
		% Copy the patch
		
		% Get the max value of the patch
		max_val = max(abs(X(curr_ex, :)));
		display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ...
		              pad + (i - 1) * (example_width + pad) + (1:example_width)) = ...
						reshape(X(curr_ex, :), example_height, example_width) / max_val;
		curr_ex = curr_ex + 1;
	end
	if curr_ex > m, 
		break; 
	end
end

% Display Image
h = imagesc(display_array, [-1 1]);

% Do not show axis
axis image off

drawnow;

end

nnCostFunction.m

function [J grad] = nnCostFunction(nn_params, ...
                                   input_layer_size, ...
                                   hidden_layer_size, ...
                                   num_labels, ...
                                   X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
%   [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
%   X, y, lambda) computes the cost and gradient of the neural network. The
%   parameters for the neural network are "unrolled" into the vector
%   nn_params and need to be converted back into the weight matrices. 
% 
%   The returned parameter grad should be a "unrolled" vector of the
%   partial derivatives of the neural network.
%

% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                 hidden_layer_size, (input_layer_size + 1));

Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                 num_labels, (hidden_layer_size + 1));

% Setup some useful variables
m = size(X, 1);
         
% You need to return the following variables correctly 
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));

% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
%               following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
%         variable J. After implementing Part 1, you can verify that your
%         cost function computation is correct by verifying the cost
%         computed in ex4.m
%
% Part 2: Implement the backpropagation algorithm to compute the gradients
%         Theta1_grad and Theta2_grad. You should return the partial derivatives of
%         the cost function with respect to Theta1 and Theta2 in Theta1_grad and
%         Theta2_grad, respectively. After implementing Part 2, you can check
%         that your implementation is correct by running checkNNGradients
%
%         Note: The vector y passed into the function is a vector of labels
%               containing values from 1..K. You need to map this vector into a 
%               binary vector of 1's and 0's to be used with the neural network
%               cost function.
%
%         Hint: We recommend implementing backpropagation using a for-loop
%               over the training examples if you are implementing it for the 
%               first time.
%
% Part 3: Implement regularization with the cost function and gradients.
%
%         Hint: You can implement this around the code for
%               backpropagation. That is, you can compute the gradients for
%               the regularization separately and then add them to Theta1_grad
%               and Theta2_grad from Part 2.
%

a1 = [ones(m,1) X]';
z2 = Theta1 * a1;
a2 = [ones(1,m); sigmoid(z2)];
z3 = Theta2 * a2;
h = sigmoid(z3);    % a K*m matrix
Y = [];             % a K*m matrix
for i = 1:m
  Y = [Y (1:num_labels==y(i))'];
endfor
cost = 0;
for i = 1:m
  cost = cost + Y(:,i)' * log(h(:,i)) + (1-Y(:,i)') * log(1-h(:,i));
endfor
%cost = sum(sum(Y' * log(h) + (1-Y') * log(1-h)));
J = cost/(-m) + lambda/(2*m) * ( sum(sum(Theta1(:,2:end) .^ 2)) + sum(sum(Theta2(:,2:end) .^ 2)) );

Delta2 = zeros(size(Theta2));
Delta1 = zeros(size(Theta1));
for i = 1:m
  delta3 = h(:,i) - Y(:,i);
  delta2 = (Theta2(:,2:end)' * delta3) .* sigmoidGradient(z2(:,i));
  Delta2 = Delta2 + delta3 * a2(:,i)';
  Delta1 = Delta1 + delta2 * a1(:,i)';
endfor
Theta2_grad(:,1) = Delta2(:,1)/m;
Theta1_grad(:,1) = Delta1(:,1)/m;
Theta2_grad(:,2:end) = Delta2(:,2:end)/m + lambda/m * Theta2(:,2:end);
Theta1_grad(:,2:end) = Delta1(:,2:end)/m + lambda/m * Theta1(:,2:end);

% -------------------------------------------------------------

% =========================================================================

% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];


end

sigmoidGradient.m

function g = sigmoidGradient(z)
%SIGMOIDGRADIENT returns the gradient of the sigmoid function
%evaluated at z
%   g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function
%   evaluated at z. This should work regardless if z is a matrix or a
%   vector. In particular, if z is a vector or matrix, you should return
%   the gradient for each element.

g = zeros(size(z));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the gradient of the sigmoid function evaluated at
%               each value of z (z can be a matrix, vector or scalar).
g = sigmoid(z) .* (1-sigmoid(z));
% =============================================================

end

sigmoid.m

function g = sigmoid(z)
%SIGMOID Compute sigmoid functoon
%   J = SIGMOID(z) computes the sigmoid of z.

g = 1.0 ./ (1.0 + exp(-z));
end

randInitializeWeights.m

function W = randInitializeWeights(L_in, L_out)
%RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in
%incoming connections and L_out outgoing connections
%   W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights 
%   of a layer with L_in incoming connections and L_out outgoing 
%   connections. 
%
%   Note that W should be set to a matrix of size(L_out, 1 + L_in) as
%   the first column of W handles the "bias" terms
%

% You need to return the following variables correctly 
W = zeros(L_out, 1 + L_in);

% ====================== YOUR CODE HERE ======================
% Instructions: Initialize W randomly so that we break the symmetry while
%               training the neural network.
%
% Note: The first column of W corresponds to the parameters for the bias unit
%

% Randomly initialize the weights to small values
epsilon_init = 0.12;
W = rand(L_out, 1+L_in) * 2*epsilon_init - epsilon_init;





% =========================================================================

end

checkNNGradients.m

function checkNNGradients(lambda)
%CHECKNNGRADIENTS Creates a small neural network to check the
%backpropagation gradients
%   CHECKNNGRADIENTS(lambda) Creates a small neural network to check the
%   backpropagation gradients, it will output the analytical gradients
%   produced by your backprop code and the numerical gradients (computed
%   using computeNumericalGradient). These two gradient computations should
%   result in very similar values.
%

if ~exist('lambda', 'var') || isempty(lambda)
    lambda = 0;
end

input_layer_size = 3;
hidden_layer_size = 5;
num_labels = 3;
m = 5;

% We generate some 'random' test data
Theta1 = debugInitializeWeights(hidden_layer_size, input_layer_size);
Theta2 = debugInitializeWeights(num_labels, hidden_layer_size);
% Reusing debugInitializeWeights to generate X
X  = debugInitializeWeights(m, input_layer_size - 1);
y  = 1 + mod(1:m, num_labels)';

% Unroll parameters
nn_params = [Theta1(:) ; Theta2(:)];

% Short hand for cost function
costFunc = @(p) nnCostFunction(p, input_layer_size, hidden_layer_size, ...
                               num_labels, X, y, lambda);

[cost, grad] = costFunc(nn_params);
numgrad = computeNumericalGradient(costFunc, nn_params);

% Visually examine the two gradient computations.  The two columns
% you get should be very similar. 
disp([numgrad grad]);
fprintf(['The above two columns you get should be very similar.\n' ...
         '(Left-Your Numerical Gradient, Right-Analytical Gradient)\n\n']);

% Evaluate the norm of the difference between two solutions.  
% If you have a correct implementation, and assuming you used EPSILON = 0.0001 
% in computeNumericalGradient.m, then diff below should be less than 1e-9
diff = norm(numgrad-grad)/norm(numgrad+grad);

fprintf(['If your backpropagation implementation is correct, then \n' ...
         'the relative difference will be small (less than 1e-9). \n' ...
         '\nRelative Difference: %g\n'], diff);

end

debugInitializeWeights.m

function W = debugInitializeWeights(fan_out, fan_in)
%DEBUGINITIALIZEWEIGHTS Initialize the weights of a layer with fan_in
%incoming connections and fan_out outgoing connections using a fixed
%strategy, this will help you later in debugging
%   W = DEBUGINITIALIZEWEIGHTS(fan_in, fan_out) initializes the weights 
%   of a layer with fan_in incoming connections and fan_out outgoing 
%   connections using a fix set of values
%
%   Note that W should be set to a matrix of size(1 + fan_in, fan_out) as
%   the first row of W handles the "bias" terms
%

% Set W to zeros
W = zeros(fan_out, 1 + fan_in);

% Initialize W using "sin", this ensures that W is always of the same
% values and will be useful for debugging
W = reshape(sin(1:numel(W)), size(W)) / 10;

% =========================================================================

end

computeNumericalGradient.m

function numgrad = computeNumericalGradient(J, theta)
%COMPUTENUMERICALGRADIENT Computes the gradient using "finite differences"
%and gives us a numerical estimate of the gradient.
%   numgrad = COMPUTENUMERICALGRADIENT(J, theta) computes the numerical
%   gradient of the function J around theta. Calling y = J(theta) should
%   return the function value at theta.

% Notes: The following code implements numerical gradient checking, and 
%        returns the numerical gradient.It sets numgrad(i) to (a numerical 
%        approximation of) the partial derivative of J with respect to the 
%        i-th input argument, evaluated at theta. (i.e., numgrad(i) should 
%        be the (approximately) the partial derivative of J with respect 
%        to theta(i).)
%                

numgrad = zeros(size(theta));
perturb = zeros(size(theta));
e = 1e-4;
for p = 1:numel(theta)
    % Set perturbation vector
    perturb(p) = e;
    loss1 = J(theta - perturb);
    loss2 = J(theta + perturb);
    % Compute Numerical Gradient
    numgrad(p) = (loss2 - loss1) / (2*e);
    perturb(p) = 0;
end

end

predict.m

function p = predict(Theta1, Theta2, X)
%PREDICT Predict the label of an input given a trained neural network
%   p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
%   trained weights of a neural network (Theta1, Theta2)

% Useful values
m = size(X, 1);
num_labels = size(Theta2, 1);

% You need to return the following variables correctly 
p = zeros(size(X, 1), 1);

h1 = sigmoid([ones(m, 1) X] * Theta1');
h2 = sigmoid([ones(m, 1) h1] * Theta2');
[dummy, p] = max(h2, [], 2);

% =========================================================================


end

Prompt Output

Loading and Visualizing Data ...
Program paused. Press enter to continue.

Loading Saved Neural Network Parameters ...

Feedforward Using Neural Network ...
Cost at parameters (loaded from ex4weights): 0.287629
(this value should be about 0.287629)

Program paused. Press enter to continue.

Checking Cost Function (w/ Regularization) ...
Cost at parameters (loaded from ex4weights): 0.383770
(this value should be about 0.383770)
Program paused. Press enter to continue.

Evaluating sigmoid gradient...
Sigmoid gradient evaluated at [-1 -0.5 0 0.5 1]:
  0.196612 0.235004 0.250000 0.235004 0.196612

Program paused. Press enter to continue.

Initializing Neural Network Parameters ...

Checking Backpropagation...
  -0.0092782524  -0.0092782524
   0.0088991196   0.0088991196
  -0.0083601076  -0.0083601076
   0.0076281355   0.0076281355
  -0.0067479837  -0.0067479837
  -0.0000030498  -0.0000030498
   0.0000142869   0.0000142869
  -0.0000259383  -0.0000259383
   0.0000369883   0.0000369883
  -0.0000468760  -0.0000468760
  -0.0001750601  -0.0001750601
   0.0002331464   0.0002331464
  -0.0002874687  -0.0002874687
   0.0003353203   0.0003353203
  -0.0003762156  -0.0003762156
  -0.0000962661  -0.0000962661
   0.0001179827   0.0001179827
  -0.0001371497  -0.0001371497
   0.0001532471   0.0001532471
  -0.0001665603  -0.0001665603
   0.3145449700   0.3145449701
   0.1110565882   0.1110565882
   0.0974006970   0.0974006970
   0.1640908188   0.1640908188
   0.0575736493   0.0575736493
   0.0504575855   0.0504575855
   0.1645679323   0.1645679323
   0.0577867379   0.0577867378
   0.0507530173   0.0507530173
   0.1583393339   0.1583393339
   0.0559235296   0.0559235296
   0.0491620841   0.0491620841
   0.1511275275   0.1511275275
   0.0536967009   0.0536967009
   0.0471456249   0.0471456249
   0.1495683347   0.1495683347
   0.0531542052   0.0531542052
   0.0465597186   0.0465597186
The above two columns you get should be very similar.
(Left-Your Numerical Gradient, Right-Analytical Gradient)

If your backpropagation implementation is correct, then
the relative difference will be small (less than 1e-9).

Relative Difference: 2.3204e-11

Program paused. Press enter to continue.

Checking Backpropagation (w/ Regularization) ...
  -0.009278252  -0.009278252
   0.008899120   0.008899120
  -0.008360108  -0.008360108
   0.007628136   0.007628136
  -0.006747984  -0.006747984
  -0.016767980  -0.016767980
   0.039433483   0.039433483
   0.059335556   0.059335556
   0.024764097   0.024764097
  -0.032688143  -0.032688143
  -0.060174472  -0.060174472
  -0.031961229  -0.031961229
   0.024922553   0.024922553
   0.059771762   0.059771762
   0.038641055   0.038641055
  -0.017370465  -0.017370465
  -0.057565867  -0.057565867
  -0.045196385  -0.045196385
   0.009145880   0.009145880
   0.054610155   0.054610155
   0.314544970   0.314544970
   0.111056588   0.111056588
   0.097400697   0.097400697
   0.118682669   0.118682669
   0.000038193   0.000038193
   0.033692656   0.033692656
   0.203987128   0.203987128
   0.117148233   0.117148233
   0.075480126   0.075480126
   0.125698067   0.125698067
  -0.004075883  -0.004075883
   0.016967709   0.016967709
   0.176337550   0.176337550
   0.113133142   0.113133142
   0.086162895   0.086162895
   0.132294136   0.132294136
  -0.004529644  -0.004529644
   0.001500484   0.001500484
The above two columns you get should be very similar.
(Left-Your Numerical Gradient, Right-Analytical Gradient)

If your backpropagation implementation is correct, then
the relative difference will be small (less than 1e-9).

Relative Difference: 2.19615e-11


Cost at (fixed) debugging parameters (w/ lambda = 3.000000): 0.576051
(for lambda = 3, this value should be about 0.576051)

Program paused. Press enter to continue.

Training Neural Network...
Iteration    50 | Cost: 5.000033e-01
Program paused. Press enter to continue.

Visualizing Neural Network...

Program paused. Press enter to continue.

Training Set Accuracy: 94.720000

Figure Output

    Examples from the dataset

    Visualization of Hidden Units

 

### 回答1: Coursera-ml-andrewng-notes-master.zip是一个包含Andrew Ng的机器学习课程笔记和代码的压缩包。这门课程是由斯坦福大学提供的计算机科学和人工智能实验室(CSAIL)的教授Andrew Ng教授开设的,旨在通过深入浅出的方式介绍机器学习的基础概念,包括监督学习、无监督学习、逻辑回归、神经网络等等。 这个压缩包中的笔记和代码可以帮助机器学习初学者更好地理解和应用所学的知识。笔记中包含了课程中涉及到的各种公式、算法和概念的详细解释,同时也包括了编程作业的指导和解答。而代码部分包含了课程中使用的MATLAB代码,以及Python代码的实现。 这个压缩包对机器学习爱好者和学生来说是一个非常有用的资源,能够让他们深入了解机器学习的基础,并掌握如何运用这些知识去解决实际问题。此外,这个压缩包还可以作为教师和讲师的教学资源,帮助他们更好地传授机器学习的知识和技能。 ### 回答2: coursera-ml-andrewng-notes-master.zip 是一个 Coursera Machine Learning 课程的笔记和教材的压缩包,由学生或者讲师编写。这个压缩包中包括了 Andrew Ng 教授在 Coursera 上发布的 Machine Learning 课程的全部讲义、练习题和答案等相关学习材料。 Machine Learning 课程是一个介绍机器学习的课程,它包括了许多重要的机器学习算法和理论,例如线性回归、神经网络、决策树、支持向量机等。这个课程的目标是让学生了解机器学习的方法,学习如何使用机器学习来解决实际问题,并最终构建自己的机器学习系统。 这个压缩包中包含的所有学习材料都是免费的,每个人都可以从 Coursera 的网站上免费获取。通过学习这个课程,你将学习到机器学习的基础知识和核心算法,掌握机器学习的实际应用技巧,以及学会如何处理不同种类的数据和问题。 总之,coursera-ml-andrewng-notes-master.zip 是一个非常有用的学习资源,它可以帮助人们更好地学习、理解和掌握机器学习的知识和技能。无论你是机器学习初学者还是资深的机器学习专家,它都将是一个重要的参考工具。 ### 回答3: coursera-ml-andrewng-notes-master.zip是一份具有高价值的文件,其中包含了Andrew NgCoursera上开授的机器学习课程的笔记。这份课程笔记可以帮助学习者更好地理解掌握机器学习技术和方法,提高在机器学习领域的实践能力。通过这份文件,学习者可以学习到机器学习的算法、原理和应用,其中包括线性回归、逻辑回归、神经网络、支持向量机、聚类、降维等多个内容。同时,这份笔记还提供了很多代码实现和模板,学习者可以通过这些实例来理解、运用和进一步深入研究机器学习技术。 总的来说,coursera-ml-andrewng-notes-master.zip对于想要深入学习和掌握机器学习技术和方法的学习者来说是一份不可多得的资料,对于企业中从事机器学习相关工作的从业人员来说也是进行技能提升或者知识更新的重要资料。因此,对于机器学习领域的学习者和从业人员来说,学习并掌握coursera-ml-andrewng-notes-master.zip所提供的知识和技能是非常有价值的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值