Review07 [coursera] Machine learning - Stanford University - Andrew Ng

本文探讨了神经网络在表示逻辑函数方面的能力,特别是在处理二进制输入时的表现。文中指出,使用sigmoid激活函数的神经网络的隐藏单元激活值总处于0到1之间,并纠正了一个常见的误解:两层神经网络无法实现XOR函数,实际上XOR是通过NOT XOR来实现的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Neural Networks: Representation

 

Any logical function over binary-valued (0 or 1) inputs x1 and x2 can be (approximately) represented using some neural network. T

The activation values of the hidden units in a neural network, with the sigmoid activation function applied at every layer, are always in the range (0, 1).  T

A two layer (one input layer, one output layer; no hidden layer) neural network can represent the XOR function.   F   XOR is actually implemented as NOT XOR.

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值