步骤:
1、创建分类器create_class_mlp()
2、获取各个类别的特征向量 gen_features()
3、将各个类别训练样本的特征向量添加到分类器中 add_sample_class()
4、训练模型,生成gmc文件 train_class_mlp(),write_class_mlp()
5、获取待分类图像的特征向量
6、通过分类器计算特征向量的类 classify_class_mlp()
7、清除分类器 clear_class_mlp()
*此处图片大小,应和分类训练的图片大小一致
read_image (Image, 'D:/Images_NG/1.bmp')
Classes:=['OK','NG']
*获取图像特征向量
gen_features (Image, FeatureVector0)
create_class_mlp (|FeatureVector0|,15, |Classes|, 'softmax', \
'normalization', 10, 42, MLPHandle)
dev_get_window (WindowHandle)
*训练分类0 - NG
list_files ('D:/Classify_All/NG', ['files','follow_links'], ImageFiles)
tuple_regexp_select (ImageFiles, ['\\.(tif|tiff|gif|bmp|jpg|jpeg|jp2|png|pcx|pgm|ppm|pbm|xwd|ima|hobj)$','ignore_case'], ImageFiles)
for Index := 0 to |ImageFiles| - 1 by 1
read_image (Image0, ImageFiles[Index])
gen_features (Image0, FeatureVector0)
add_sample_class_mlp (MLPHandle, FeatureVector0, 0)
endfor
*训练分类1 - OK
list_files ('D:/Classify_All/OK', ['files','follow_links'], ImageFiles)
tuple_regexp_select (ImageFiles, ['\\.(tif|tiff|gif|bmp|jpg|jpeg|jp2|png|pcx|pgm|ppm|pbm|xwd|ima|hobj)$','ignore_case'], ImageFiles)
for Index := 0 to |ImageFiles| - 1 by 1
read_image (Image1, ImageFiles[Index])
gen_features (Image1, FeatureVector1)
add_sample_class_mlp (MLPHandle, FeatureVector1, 1)
endfor
train_class_mlp (MLPHandle, 200000, 1, 0.0001, Error, ErrorLog)
write_class_mlp (MLPHandle, 'D:/Classify_All/1.gmc')
stop ()
*验证算法
dev_get_window (WindowHandle)
set_display_font (WindowHandle, 30, 'mono', 'true', 'false')
*加载训练好的gmc文件
read_class_mlp ('D:/Classify_All/1.gmc', MLPHandle)
list_files ('D:/Classify_All/All', ['files','follow_links'], ImageFiles)
tuple_regexp_select (ImageFiles, ['\\.(tif|tiff|gif|bmp|jpg|jpeg|jp2|png|pcx|pgm|ppm|pbm|xwd|ima|hobj)$','ignore_case'], ImageFiles)
for Index := 0 to |ImageFiles| - 1 by 1
read_image (Image, ImageFiles[Index])
gen_features (Image, FeatureVector)
classify_class_mlp (MLPHandle, FeatureVector, 2, ClassIDs, Confidence)
dev_display (Image)
if (ClassIDs[0] == 0)
disp_message (WindowHandle, 'Result: ' + 'NG', 'window', 50, 50, 'red', 'false')
endif
if (ClassIDs[0] == 1)
disp_message (WindowHandle, 'Result: ' + 'OK', 'window', 50, 50, 'green', 'false')
endif
stop ()
endfor
*清除mlp分类器
clear_class_mlp (MLPHandle)
gen_feature(Image,FeatureVector)函数:
FeatureVector:=[]
gen_sobel_features(Image,FeatureVector,FeatureVector)
zoom_image_factor(Image,Zoomed1,0.5,0.5,'constant')
gen_sobel_features(Zoomed1,FeatureVector,FeatureVector)
FeatureVector := real(FeatureVector)
return()
)