Halcon-MLP分类

步骤:

1、创建分类器create_class_mlp()

2、获取各个类别的特征向量  gen_features()

3、将各个类别训练样本的特征向量添加到分类器中  add_sample_class()

4、训练模型,生成gmc文件   train_class_mlp(),write_class_mlp()

5、获取待分类图像的特征向量

6、通过分类器计算特征向量的类  classify_class_mlp()

7、清除分类器 clear_class_mlp()

*此处图片大小,应和分类训练的图片大小一致
read_image (Image, 'D:/Images_NG/1.bmp')
Classes:=['OK','NG']

*获取图像特征向量
gen_features (Image, FeatureVector0)
create_class_mlp (|FeatureVector0|,15, |Classes|, 'softmax', \
                  'normalization', 10, 42, MLPHandle)

dev_get_window (WindowHandle)

 
*训练分类0 - NG
list_files ('D:/Classify_All/NG', ['files','follow_links'], ImageFiles)
tuple_regexp_select (ImageFiles, ['\\.(tif|tiff|gif|bmp|jpg|jpeg|jp2|png|pcx|pgm|ppm|pbm|xwd|ima|hobj)$','ignore_case'], ImageFiles)
for Index := 0 to |ImageFiles| - 1 by 1
    read_image (Image0, ImageFiles[Index])   
    gen_features (Image0, FeatureVector0)
    add_sample_class_mlp (MLPHandle, FeatureVector0, 0)  
endfor

*训练分类1 - OK
list_files ('D:/Classify_All/OK', ['files','follow_links'], ImageFiles)
tuple_regexp_select (ImageFiles, ['\\.(tif|tiff|gif|bmp|jpg|jpeg|jp2|png|pcx|pgm|ppm|pbm|xwd|ima|hobj)$','ignore_case'], ImageFiles)
for Index := 0 to |ImageFiles| - 1 by 1
    read_image (Image1, ImageFiles[Index])
    gen_features (Image1, FeatureVector1)
    add_sample_class_mlp (MLPHandle, FeatureVector1, 1) 
endfor

train_class_mlp (MLPHandle, 200000, 1, 0.0001, Error, ErrorLog)
write_class_mlp (MLPHandle, 'D:/Classify_All/1.gmc')

stop ()
*验证算法
dev_get_window (WindowHandle)
set_display_font (WindowHandle, 30, 'mono', 'true', 'false')

*加载训练好的gmc文件
read_class_mlp ('D:/Classify_All/1.gmc', MLPHandle)


list_files ('D:/Classify_All/All', ['files','follow_links'], ImageFiles)
tuple_regexp_select (ImageFiles, ['\\.(tif|tiff|gif|bmp|jpg|jpeg|jp2|png|pcx|pgm|ppm|pbm|xwd|ima|hobj)$','ignore_case'], ImageFiles)
for Index := 0 to |ImageFiles| - 1 by 1
    read_image (Image, ImageFiles[Index])
    gen_features (Image, FeatureVector)
    classify_class_mlp (MLPHandle, FeatureVector, 2, ClassIDs, Confidence)
    dev_display (Image)
    if (ClassIDs[0] == 0)
        disp_message (WindowHandle, 'Result: ' + 'NG', 'window', 50, 50, 'red', 'false')
    endif
    if (ClassIDs[0] == 1)
        disp_message (WindowHandle, 'Result: ' + 'OK', 'window', 50, 50, 'green', 'false')
    endif
    stop ()
endfor

*清除mlp分类器
clear_class_mlp (MLPHandle)


gen_feature(Image,FeatureVector)函数:

FeatureVector:=[]

gen_sobel_features(Image,FeatureVector,FeatureVector)

zoom_image_factor(Image,Zoomed1,0.5,0.5,'constant')

gen_sobel_features(Zoomed1,FeatureVector,FeatureVector)

FeatureVector := real(FeatureVector)

return()

)

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值