-
前言
-
1.1 前言
AXIS_FIFO 的应用十分广泛,利用 AXIS 协议来完成对数据的读写缓存。本问以 Corundum 开源项目内的 axis_fifo 模块为例,从头分析如何手搓一个 axis_fifo,可以加深对 axis 总线的认识,同时也能学习Corundum这个项目。
最近也一直在学习 Corundum这个网卡项目,后续有时间逐步发布 Corundum 内的各个模块的分析(个人见解,我是小白菜狗,有错误轻点喷)。
1.2 源码获取
本文是利用 Corundum 这个开源项目的 axi_fifo 模块来写的。
如果不是为了学习 Corundum 只是为了学习 axis 总线,或者学习axis_fifo 设计,不需要下载源码,本模块的代码在下面会给出。
Corundum 的下载网址:corundum/corundum: Open source FPGA-based NIC and platform for in-network compute
axi_fifo 在 Corundm 的路径:
corundum-master\fpga\lib\eth\lib\axis\rtl\axi_fifo.v
源码:
-
/* Copyright (c) 2013-2023 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4-Stream FIFO */ module axis_fifo # ( // FIFO depth in words // KEEP_WIDTH words per cycle if KEEP_ENABLE set // Rounded up to nearest power of 2 cycles parameter DEPTH = 4096, // Width of AXI stream interfaces in bits parameter DATA_WIDTH = 8, // Propagate tkeep signal // If disabled, tkeep assumed to be 1'b1 parameter KEEP_ENABLE = (DATA_WIDTH>8), // tkeep signal width (words per cycle) parameter KEEP_WIDTH = ((DATA_WIDTH+7)/8), // Propagate tlast signal parameter LAST_ENABLE = 1, // Propagate tid signal parameter ID_ENABLE = 0, // tid signal width parameter ID_WIDTH = 8, // Propagate tdest signal parameter DEST_ENABLE = 0, // tdest signal width parameter DEST_WIDTH = 8, // Propagate tuser signal parameter USER_ENABLE = 1, // tuser signal width parameter USER_WIDTH = 1, // number of RAM pipeline registers parameter RAM_PIPELINE = 1, // use output FIFO // When set, the RAM read enable and pipeline clock enables are removed parameter OUTPUT_FIFO_ENABLE = 0, // Frame FIFO mode - operate on frames instead of cycles // When set, m_axis_tvalid will not be deasserted within a frame // Requires LAST_ENABLE set parameter FRAME_FIFO = 0, // tuser value for bad frame marker parameter USER_BAD_FRAME_VALUE = 1'b1, // tuser mask for bad frame marker parameter USER_BAD_FRAME_MASK = 1'b1, // Drop frames larger than FIFO // Requires FRAME_FIFO set parameter DROP_OVERSIZE_FRAME = FRAME_FIFO, // Drop frames marked bad // Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set parameter DROP_BAD_FRAME = 0, // Drop incoming frames when full // When set, s_axis_tready is always asserted // Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set parameter DROP_WHEN_FULL = 0, // Mark incoming frames as bad frames when full // When set, s_axis_tready is always asserted // Requires FRAME_FIFO to be clear parameter MARK_WHEN_FULL = 0, // Enable pause request input parameter PAUSE_ENABLE = 0, // Pause between frames parameter FRAME_PAUSE = FRAME_FIFO ) ( input wire clk, input wire rst, /* * AXI input */ input wire [DATA_WIDTH-1:0] s_axis_tdata, input wire [KEEP_WIDTH-1:0] s_axis_tkeep, input wire s_axis_tvalid, output wire s_axis_tready, input wire s_axis_tlast, input wire [ID_WIDTH-1:0] s_axis_tid, input wire [DEST_WIDTH-1:0] s_axis_tdest, input wire [USER_WIDTH-1:0] s_axis_tuser, /* * AXI output */ output wire [DATA_WIDTH-1:0] m_axis_tdata, output wire [KEEP_WIDTH-1:0] m_axis_tkeep, output wire m_axis_tvalid, input wire m_axis_tready, output wire m_axis_tlast, output wire [ID_WIDTH-1:0] m_axis_tid, output wire [DEST_WIDTH-1:0] m_axis_tdest, output wire [USER_WIDTH-1:0] m_axis_tuser, /* * Pause */ input wire pause_req, output wire pause_ack, /* * Status */ output wire [$clog2(DEPTH):0] status_depth, output wire [$clog2(DEPTH):0] status_depth_commit, output wire status_overflow, output wire status_bad_frame, output wire status_good_frame ); parameter ADDR_WIDTH = (KEEP_ENABLE && KEEP_WIDTH > 1) ? $clog2(DEPTH/KEEP_WIDTH) : $clog2(DEPTH); parameter OUTPUT_FIFO_ADDR_WIDTH = RAM_PIPELINE < 2 ? 3 : $clog2(RAM_PIPELINE*2+7); // check configuration initial begin if (FRAME_FIFO && !LAST_ENABLE) begin $error("Error: FRAME_FIFO set requires LAST_ENABLE set (instance %m)"); $finish; end if (DROP_OVERSIZE_FRAME && !FRAME_FIFO) begin $error("Error: DROP_OVERSIZE_FRAME set requires FRAME_FIFO set (instance %m)"); $finish; end if (DROP_BAD_FRAME && !(FRAME_FIFO && DROP_OVERSIZE_FRAME)) begin $error("Error: DROP_BAD_FRAME set requires FRAME_FIFO and DROP_OVERSIZE_FRAME set (instance %m)"); $finish; end if (DROP_WHEN_FULL && !(FRAME_FIFO && DROP_OVERSIZE_FRAME)) begin $error("Error: DROP_WHEN_FULL set requires FRAME_FIFO and DROP_OVERSIZE_FRAME set (instance %m)"); $finish; end if ((DROP_BAD_FRAME || MARK_WHEN_FULL) && (USER_BAD_FRAME_MASK & {USER_WIDTH{1'b1}}) == 0) begin $error("Error: Invalid USER_BAD_FRAME_MASK value (instance %m)"); $finish; end if (MARK_WHEN_FULL && FRAME_FIFO) begin $error("Error: MARK_WHEN_FULL is not compatible with FRAME_FIFO (instance %m)"); $finish; end if (MARK_WHEN_FULL && !LAST_ENABLE) begin $error("Error: MARK_WHEN_FULL set requires LAST_ENABLE set (instance %m)"); $finish; end end localparam KEEP_OFFSET = DATA_WIDTH; localparam LAST_OFFSET = KEEP_OFFSET + (KEEP_ENABLE ? KEEP_WIDTH : 0); localparam ID_OFFSET = LAST_OFFSET + (LAST_ENABLE ? 1 : 0); localparam DEST_OFFSET = ID_OFFSET + (ID_ENABLE ? ID_WIDTH : 0); localparam USER_OFFSET = DEST_OFFSET + (DEST_ENABLE ? DEST_WIDTH : 0); localparam WIDTH = USER_OFFSET + (USER_ENABLE ? USER_WIDTH : 0); reg [ADDR_WIDTH:0] wr_ptr_reg = {ADDR_WIDTH+1{1'b0}}; reg [ADDR_WIDTH:0] wr_ptr_commit_reg = {ADDR_WIDTH+1{1'b0}}; reg [ADDR_WIDTH:0] rd_ptr_reg = {ADDR_WIDTH+1{1'b0}}; (* ramstyle = "no_rw_check" *) reg [WIDTH-1:0] mem[(2**ADDR_WIDTH)-1:0]; reg mem_read_data_valid_reg = 1'b0; (* shreg_extract = "no" *) reg [WIDTH-1:0] m_axis_pipe_reg[RAM_PIPELINE+1-1:0]; reg [RAM_PIPELINE+1-1:0] m_axis_tvalid_pipe_reg = 0; // full when first MSB different but rest same wire full = wr_ptr_reg == (rd_ptr_reg ^ {1'b1, {ADDR_WIDTH{1'b0}}}); // empty when pointers match exactly wire empty = wr_ptr_commit_reg == rd_ptr_reg; // overflow within packet wire full_wr = wr_ptr_reg == (wr_ptr_commit_reg ^ {1'b1, {ADDR_WIDTH{1'b0}}}); reg s_frame_reg = 1'b0; reg drop_frame_reg = 1'b0; reg mark_frame_reg = 1'b0; reg send_frame_reg = 1'b0; reg [ADDR_WIDTH:0] depth_reg = 0; reg [ADDR_WIDTH:0] depth_commit_reg = 0; reg overflow_reg = 1'b0; reg bad_frame_reg = 1'b0; reg good_frame_reg = 1'b0; assign s_axis_tready = FRAME_FIFO ? (!full || (full_wr && DROP_OVERSIZE_FRAME) || DROP_WHEN_FULL) : (!full || MARK_WHEN_FULL); wire [WIDTH-1:0] s_axis; generate assign s_axis[DATA_WIDTH-1:0] = s_axis_tdata; if (KEEP_ENABLE) assign s_axis[KEEP_OFFSET +: KEEP_WIDTH] = s_axis_tkeep; if (LAST_ENABLE) assign s_axis[LAST_OFFSET] = s_axis_tlast | mark_frame_reg; if (ID_ENABLE) assign s_axis[ID_OFFSET +: ID_WIDTH] = s_axis_tid; if (DEST_ENABLE) assign s_axis[DEST_OFFSET +: DEST_WIDTH] = s_axis_tdest; if (USER_ENABLE) assign s_axis[USER_OFFSET +: USER_WIDTH] = mark_frame_reg ? USER_BAD_FRAME_VALUE : s_axis_tuser; endgenerate wire [WIDTH-1:0] m_axis = m_axis_pipe_reg[RAM_PIPELINE+1-1]; wire m_axis_tready_pipe; wire m_axis_tvalid_pipe = m_axis_tvalid_pipe_reg[RAM_PIPELINE+1-1]; wire [DATA_WIDTH-1:0] m_axis_tdata_pipe = m_axis[DATA_WIDTH-1:0]; wire [KEEP_WIDTH-1:0] m_axis_tkeep_pipe = KEEP_ENABLE ? m_axis[KEEP_OFFSET +: KEEP_WIDTH] : {KEEP_WIDTH{1'b1}}; wire m_axis_tlast_pipe = LAST_ENABLE ? m_axis[LAST_OFFSET] : 1'b1; wire [ID_WIDTH-1:0] m_axis_tid_pipe = ID_ENABLE ? m_axis[ID_OFFSET +: ID_WIDTH] : {ID_WIDTH{1'b0}}; wire [DEST_WIDTH-1:0] m_axis_tdest_pipe = DEST_ENABLE ? m_axis[DEST_OFFSET +: DEST_WIDTH] : {DEST_WIDTH{1'b0}}; wire [USER_WIDTH-1:0] m_axis_tuser_pipe = USER_ENABLE ? m_axis[USER_OFFSET +: USER_WIDTH] : {USER_WIDTH{1'b0}}; wire m_axis_tready_out; wire m_axis_tvalid_out; wire [DATA_WIDTH-1:0] m_axis_tdata_out; wire [KEEP_WIDTH-1:0] m_axis_tkeep_out; wire m_axis_tlast_out; wire [ID_WIDTH-1:0] m_axis_tid_out; wire [DEST_WIDTH-1:0] m_axis_tdest_out; wire [USER_WIDTH-1:0] m_axis_tuser_out; wire pipe_ready; assign status_depth = (KEEP_ENABLE && KEEP_WIDTH > 1) ? {depth_reg, {$clog2(KEEP_WIDTH){1'b0}}} : depth_reg; assign status_depth_commit = (KEEP_ENABLE && KEEP_WIDTH > 1) ? {depth_commit_reg, {$clog2(KEEP_WIDTH){1'b0}}} : depth_commit_reg; assign status_overflow = overflow_reg; assign status_bad_frame = bad_frame_reg; assign status_good_frame = good_frame_reg; // Write logic always @(posedge clk) begin overflow_reg <= 1'b0; bad_frame_reg <= 1'b0; good_frame_reg <= 1'b0; if (s_axis_tready && s_axis_tvalid && LAST_ENABLE) begin // track input frame status s_frame_reg <= !s_axis_tlast; end if (FRAME_FIFO) begin // frame FIFO mode if (s_axis_tready && s_axis_tvalid) begin // transfer in if ((full && DROP_WHEN_FULL) || (full_wr && DROP_OVERSIZE_FRAME) || drop_frame_reg) begin // full, packet overflow, or currently dropping frame // drop frame drop_frame_reg <= 1'b1; if (s_axis_tlast) begin // end of frame, reset write pointer wr_ptr_reg <= wr_ptr_commit_reg; drop_frame_reg <= 1'b0; overflow_reg <= 1'b1; end end else begin // store it mem[wr_ptr_reg[ADDR_WIDTH-1:0]] <= s_axis; wr_ptr_reg <= wr_ptr_reg + 1; if (s_axis_tlast || (!DROP_OVERSIZE_FRAME && (full_wr || send_frame_reg))) begin // end of frame or send frame send_frame_reg <= !s_axis_tlast; if (s_axis_tlast && DROP_BAD_FRAME && USER_BAD_FRAME_MASK & ~(s_axis_tuser ^ USER_BAD_FRAME_VALUE)) begin // bad packet, reset write pointer wr_ptr_reg <= wr_ptr_commit_reg; bad_frame_reg <= 1'b1; end else begin // good packet or packet overflow, update write pointer wr_ptr_commit_reg <= wr_ptr_reg + 1; good_frame_reg <= s_axis_tlast; end end end end else if (s_axis_tvalid && full_wr && !DROP_OVERSIZE_FRAME) begin // data valid with packet overflow // update write pointer send_frame_reg <= 1'b1; wr_ptr_commit_reg <= wr_ptr_reg; end end else begin // normal FIFO mode if (s_axis_tready && s_axis_tvalid) begin if (drop_frame_reg && MARK_WHEN_FULL) begin // currently dropping frame if (s_axis_tlast) begin // end of frame if (!full && mark_frame_reg) begin // terminate marked frame mark_frame_reg <= 1'b0; mem[wr_ptr_reg[ADDR_WIDTH-1:0]] <= s_axis; wr_ptr_reg <= wr_ptr_reg + 1; wr_ptr_commit_reg <= wr_ptr_reg + 1; end // end of frame, clear drop flag drop_frame_reg <= 1'b0; overflow_reg <= 1'b1; end end else if ((full || mark_frame_reg) && MARK_WHEN_FULL) begin // full or marking frame // drop frame; mark if this isn't the first cycle drop_frame_reg <= 1'b1; mark_frame_reg <= mark_frame_reg || s_frame_reg; if (s_axis_tlast) begin drop_frame_reg <= 1'b0; overflow_reg <= 1'b1; end end else begin // transfer in mem[wr_ptr_reg[ADDR_WIDTH-1:0]] <= s_axis; wr_ptr_reg <= wr_ptr_reg + 1; wr_ptr_commit_reg <= wr_ptr_reg + 1; end end else if ((!full && !drop_frame_reg && mark_frame_reg) && MARK_WHEN_FULL) begin // terminate marked frame mark_frame_reg <= 1'b0; mem[wr_ptr_reg[ADDR_WIDTH-1:0]] <= s_axis; wr_ptr_reg <= wr_ptr_reg + 1; wr_ptr_commit_reg <= wr_ptr_reg + 1; end end if (rst) begin wr_ptr_reg <= {ADDR_WIDTH+1{1'b0}}; wr_ptr_commit_reg <= {ADDR_WIDTH+1{1'b0}}; s_frame_reg <= 1'b0; drop_frame_reg <= 1'b0; mark_frame_reg <= 1'b0; send_frame_reg <= 1'b0; overflow_reg <= 1'b0; bad_frame_reg <= 1'b0; good_frame_reg <= 1'b0; end end // Status always @(posedge clk) begin depth_reg <= wr_ptr_reg - rd_ptr_reg; depth_commit_reg <= wr_ptr_commit_reg - rd_ptr_reg; end // Read logic integer j; always @(posedge clk) begin if (m_axis_tready_pipe) begin // output ready; invalidate stage m_axis_tvalid_pipe_reg[RAM_PIPELINE+1-1] <= 1'b0; end for (j = RAM_PIPELINE+1-1; j > 0; j = j - 1) begin if (m_axis_tready_pipe || ((~m_axis_tvalid_pipe_reg) >> j)) begin // output ready or bubble in pipeline; transfer down pipeline m_axis_tvalid_pipe_reg[j] <= m_axis_tvalid_pipe_reg[j-1]; m_axis_pipe_reg[j] <= m_axis_pipe_reg[j-1]; m_axis_tvalid_pipe_reg[j-1] <= 1'b0; end end if (m_axis_tready_pipe || ~m_axis_tvalid_pipe_reg) begin // output ready or bubble in pipeline; read new data from FIFO m_axis_tvalid_pipe_reg[0] <= 1'b0; m_axis_pipe_reg[0] <= mem[rd_ptr_reg[ADDR_WIDTH-1:0]]; if (!empty && pipe_ready) begin // not empty, increment pointer m_axis_tvalid_pipe_reg[0] <= 1'b1; rd_ptr_reg <= rd_ptr_reg + 1; end end if (rst) begin rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}}; m_axis_tvalid_pipe_reg <= 0; end end generate if (!OUTPUT_FIFO_ENABLE) begin assign pipe_ready = 1'b1; assign m_axis_tready_pipe = m_axis_tready_out; assign m_axis_tvalid_out = m_axis_tvalid_pipe; assign m_axis_tdata_out = m_axis_tdata_pipe; assign m_axis_tkeep_out = m_axis_tkeep_pipe; assign m_axis_tlast_out = m_axis_tlast_pipe; assign m_axis_tid_out = m_axis_tid_pipe; assign m_axis_tdest_out = m_axis_tdest_pipe; assign m_axis_tuser_out = m_axis_tuser_pipe; end else begin : output_fifo // output datapath logic reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg m_axis_tvalid_reg = 1'b0; reg m_axis_tlast_reg = 1'b0; reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}}; reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_wr_ptr_reg = 0; reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_rd_ptr_reg = 0; reg out_fifo_half_full_reg = 1'b0; wire out_fifo_full = out_fifo_wr_ptr_reg == (out_fifo_rd_ptr_reg ^ {1'b1, {OUTPUT_FIFO_ADDR_WIDTH{1'b0}}}); wire out_fifo_empty = out_fifo_wr_ptr_reg == out_fifo_rd_ptr_reg; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) reg [DATA_WIDTH-1:0] out_fifo_tdata[2**OUTPUT_FIFO_ADDR_WIDTH-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) reg [KEEP_WIDTH-1:0] out_fifo_tkeep[2**OUTPUT_FIFO_ADDR_WIDTH-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) reg out_fifo_tlast[2**OUTPUT_FIFO_ADDR_WIDTH-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) reg [ID_WIDTH-1:0] out_fifo_tid[2**OUTPUT_FIFO_ADDR_WIDTH-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) reg [DEST_WIDTH-1:0] out_fifo_tdest[2**OUTPUT_FIFO_ADDR_WIDTH-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) reg [USER_WIDTH-1:0] out_fifo_tuser[2**OUTPUT_FIFO_ADDR_WIDTH-1:0]; assign pipe_ready = !out_fifo_half_full_reg; assign m_axis_tready_pipe = 1'b1; assign m_axis_tdata_out = m_axis_tdata_reg; assign m_axis_tkeep_out = KEEP_ENABLE ? m_axis_tkeep_reg : {KEEP_WIDTH{1'b1}}; assign m_axis_tvalid_out = m_axis_tvalid_reg; assign m_axis_tlast_out = LAST_ENABLE ? m_axis_tlast_reg : 1'b1; assign m_axis_tid_out = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}}; assign m_axis_tdest_out = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}}; assign m_axis_tuser_out = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}}; always @(posedge clk) begin m_axis_tvalid_reg <= m_axis_tvalid_reg && !m_axis_tready_out; out_fifo_half_full_reg <= $unsigned(out_fifo_wr_ptr_reg - out_fifo_rd_ptr_reg) >= 2**(OUTPUT_FIFO_ADDR_WIDTH-1); if (!out_fifo_full && m_axis_tvalid_pipe) begin out_fifo_tdata[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tdata_pipe; out_fifo_tkeep[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tkeep_pipe; out_fifo_tlast[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tlast_pipe; out_fifo_tid[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tid_pipe; out_fifo_tdest[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tdest_pipe; out_fifo_tuser[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tuser_pipe; out_fifo_wr_ptr_reg <= out_fifo_wr_ptr_reg + 1; end if (!out_fifo_empty && (!m_axis_tvalid_reg || m_axis_tready_out)) begin m_axis_tdata_reg <= out_fifo_tdata[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]]; m_axis_tkeep_reg <= out_fifo_tkeep[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]]; m_axis_tvalid_reg <= 1'b1; m_axis_tlast_reg <= out_fifo_tlast[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]]; m_axis_tid_reg <= out_fifo_tid[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]]; m_axis_tdest_reg <= out_fifo_tdest[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]]; m_axis_tuser_reg <= out_fifo_tuser[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]]; out_fifo_rd_ptr_reg <= out_fifo_rd_ptr_reg + 1; end if (rst) begin out_fifo_wr_ptr_reg <= 0; out_fifo_rd_ptr_reg <= 0; m_axis_tvalid_reg <= 1'b0; end end end if (PAUSE_ENABLE) begin : pause // Pause logic reg pause_reg = 1'b0; reg pause_frame_reg = 1'b0; assign m_axis_tready_out = m_axis_tready && !pause_reg; assign m_axis_tvalid = m_axis_tvalid_out && !pause_reg; assign m_axis_tdata = m_axis_tdata_out; assign m_axis_tkeep = m_axis_tkeep_out; assign m_axis_tlast = m_axis_tlast_out; assign m_axis_tid = m_axis_tid_out; assign m_axis_tdest = m_axis_tdest_out; assign m_axis_tuser = m_axis_tuser_out; assign pause_ack = pause_reg; always @(posedge clk) begin if (FRAME_PAUSE) begin if (m_axis_tvalid && m_axis_tready) begin if (m_axis_tlast) begin pause_frame_reg <= 1'b0; pause_reg <= pause_req; end else begin pause_frame_reg <= 1'b1; end end else begin if (!pause_frame_reg) begin pause_reg <= pause_req; end end end else begin pause_reg <= pause_req; end if (rst) begin pause_frame_reg <= 1'b0; pause_reg <= 1'b0; end end end else begin assign m_axis_tready_out = m_axis_tready; assign m_axis_tvalid = m_axis_tvalid_out; assign m_axis_tdata = m_axis_tdata_out; assign m_axis_tkeep = m_axis_tkeep_out; assign m_axis_tlast = m_axis_tlast_out; assign m_axis_tid = m_axis_tid_out; assign m_axis_tdest = m_axis_tdest_out; assign m_axis_tuser = m_axis_tuser_out; assign pause_ack = 1'b0; end endgenerate endmodule `resetall -
代码详解
注意:代码使用 axis 总线进行设计,因此,读者需要了解一些关于axis总线的知识。
2.1 宏定义
// FIFO depth in words
// KEEP_WIDTH words per cycle if KEEP_ENABLE set
// Rounded up to nearest power of 2 cycles
parameter DEPTH = 4096,
// Width of AXI stream interfaces in bits
parameter DATA_WIDTH = 8,
// Propagate tkeep signal
// If disabled, tkeep assumed to be 1'b1
parameter KEEP_ENABLE = (DATA_WIDTH>8),
// tkeep signal width (words per cycle)
parameter KEEP_WIDTH = ((DATA_WIDTH+7)/8),
// Propagate tlast signal
parameter LAST_ENABLE = 1,
// Propagate tid signal
parameter ID_ENABLE = 0,
// tid signal width
parameter ID_WIDTH = 8,
// Propagate tdest signal
parameter DEST_ENABLE = 0,
// tdest signal width
parameter DEST_WIDTH = 8,
// Propagate tuser signal
parameter USER_ENABLE = 1,
// tuser signal width
parameter USER_WIDTH = 1,
// number of RAM pipeline registers
parameter RAM_PIPELINE = 1,
// use output FIFO
// When set, the RAM read enable and pipeline clock enables are removed
parameter OUTPUT_FIFO_ENABLE = 0,
// Frame FIFO mode - operate on frames instead of cycles
// When set, m_axis_tvalid will not be deasserted within a frame
// Requires LAST_ENABLE set
parameter FRAME_FIFO = 0,
// tuser value for bad frame marker
parameter USER_BAD_FRAME_VALUE = 1'b1,
// tuser mask for bad frame marker
parameter USER_BAD_FRAME_MASK = 1'b1,
// Drop frames larger than FIFO
// Requires FRAME_FIFO set
parameter DROP_OVERSIZE_FRAME = FRAME_FIFO,
// Drop frames marked bad
// Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set
parameter DROP_BAD_FRAME = 0,
// Drop incoming frames when full
// When set, s_axis_tready is always asserted
// Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set
parameter DROP_WHEN_FULL = 0,
// Mark incoming frames as bad frames when full
// When set, s_axis_tready is always asserted
// Requires FRAME_FIFO to be clear
parameter MARK_WHEN_FULL = 0,
// Enable pause request input
parameter PAUSE_ENABLE = 0,
// Pause between frames
parameter FRAME_PAUSE = FRAME_FIFO
上述部分是改模块的所有宏定义部分,接下来我们挨个分析这些宏定义的意义。
2.1.1 基础部分:
parameter DEPTH = 4096,
定义 FIFO 的深度,指 FIFO 的总大小。如果定义一个数据位宽是8bit(1字节),则深度是4096,如果数据位宽是16bit(2 字节),则实际深度是4096/2字节 = 2048 了。
parameter DATA_WIDTH = 8,
数据位宽,就是上面说的一个数据位宽是多少位,这里定义8bit(1 字节)。
2.1.2 axis 信号部分
parameter KEEP_ENABLE = (DATA_WIDTH>8),
是否启用KEEP这个信号(axis总线的信号),如果数据位宽>8bit 则默认启动。
parameter KEEP_WIDTH = ((DATA_WIDTH+7)/8),
KEEP信号的宽度,数据位宽+7 是为了保证能有足够的KEEP来表示数据有效位;例如:DATA_WIDTH 为 10bit 则KEEP_WIDTH(KEEP信号的宽度)为2(不保留小数点),第一位表示DATA的前8 bit,后一位表示 9和 10 bit。
parameter LAST_ENABLE = 1,
是否启用 LAST 信号
parameter ID_ENABLE = 0,
是否启用 ID 信号
parameter ID_WIDTH = 8,
ID 信号的宽度 bit 单位
parameter DEST_ENABLE = 0,
是否启用 DEST 信号 表示发送目标
parameter DEST_WIDTH = 8,
目标信号宽度
parameter USER_ENABLE = 1,
是否启用 USER 信号
parameter USER_WIDTH = 1,
USER 信号的宽度
2.1.3 FIFO 模式选择
这一部分也是最难理解的一部分。
parameter RAM_PIPELINE = 1,
在该 AXIS FIFO设计中,在其余模块向 FIFO 读数据时,数据的流通路径为:
axis_fifo —> pipe_reg—> 小fifo(可选)
而这个参数就是控制pipe_reg的寄存器长度,pipe_reg的作用作者也不太清楚,似乎是用于时序的调节,打几拍延时来保证时序合理性。
parameter OUTPUT_FIFO_ENABLE = 0,
是否启用上述的小fifo,用于进一步约束时序
parameter FRAME_FIFO = 0,
是否启用帧完整模式。
启用时,在写数据时,如果信号不能完整的写入一帧则不会被成功写入(比如,写着写着axis_fifo满了,则已经写入的数据也会被丢弃)
在读数据的时候会连续输出一整个完整的帧,不会被外部的急停信号(PAUSE_ENABLE 在下面宏定义)打断。
parameter USER_BAD_FRAME_VALUE = 1'b1,
parameter USER_BAD_FRAME_MASK = 1'b1,
这两个用于对坏帧的判断,VALUE代表什么值表示坏帧,比如:4’b0110,只有axis的user信号中在指定位(MASK指定)出现4’b0110时,才会判断为坏帧。
MASK 指定坏帧出现的位置,不如8’b00111100,坏帧的标识在user信号的第3-6位。
parameter DROP_OVERSIZE_FRAME = FRAME_FIFO,
是否丢弃过大帧,这个比较难以理解,等会我们在下面关于full_wr的定义中讲解。实际上他就是在full_wr这个信号为1时,如果启用DROP_OVERSIZE_FRAME 这个信号则丢弃这个超大帧(超过FIFO大小的帧)。
parameter DROP_BAD_FRAME = 0,
丢弃坏帧,按照上述检测坏帧的方法,检测到坏帧丢弃。另外,当写入数据时,写着写着 FIFO 满了,一帧数据还没写完,也会被表示为坏帧,将已经写入的部分丢弃。
parameter DROP_WHEN_FULL = 0,
当 FIFO 满时,是否丢弃数据
parameter MARK_WHEN_FULL = 0,
当 FIFO 满时,按照上述标记坏帧的方式,标记该帧,一般用在DROP_WHEN_FULL 为0(不丢弃)时
parameter PAUSE_ENABLE = 0,
parameter FRAME_PAUSE = FRAME_FIFO
急停选择。PAUSE_ENABLE 为1时,如果FRAME_PAUSE 如果为0,pause_req(输入)请求时(该值为1时), axis_fifo 停止输出数据。
FRAME_PAUSE 如果该值为1,表示只有当一帧信号输出完成,才会响应pause_req的请求,以此来保证一帧完整信号的输出。
2.2 输入输出信号
困死了,有空再写吧
5万+

被折叠的 条评论
为什么被折叠?



