全源最短路模版

/*
多源最短路径 floyd_warshall 复杂度O(n^3) 
传入图的大小和邻接阵
返回各点间最短距离min[][]和路径pre[][]
pre[i][j]记录i到j最短路径上j的父结点
可更改路权类型,路权必须非负!
*/
#define MAXN 200
#define inf 1000000000
typedef int elem_t;

void floyd_warshall(int n, elem_t mat[][MAXN], elem_t min[][MAXN], int pre[][MAXN]){
	int i, j, k;
	for (i = 0; i < n; i++)
		for (j = 0; j < n; j++)
			min[i][j] = mat[i][j], pre[i][j] = (i == j) ? -1 : i;
	for (k = 0; k < n; k++)
		for (i = 0; i < n; i++)
			for (j = 0; j < n; j++)
				if (min[i][k] + min[k][j] < min[i][j])
					min[i][j] = min[i][k] + min[k][j], pre[i][j] = pre[k][j];
}

# P5905 【模板】全源短路(Johnson) ## 题目描述 给定一个包含 $n$ 个结点和 $m$ 条带权边的有向图,求所有点对间的短路径长度,一条路径的长度定义为这条路径上所有边的权值和。 注意: 1. 边权**可能**为负,且图中**可能**存在重边和自环; 2. 部分数据卡 $n$ 轮 SPFA 算法。 ## 输入格式 第 $1$ 行:$2$ 个整数 $n,m$,表示给定有向图的结点数量和有向边数量。 接下来 $m$ 行:每行 $3$ 个整数 $u,v,w$,表示有一条权值为 $w$ 的有向边从编号为 $u$ 的结点连向编号为 $v$ 的结点。 ## 输出格式 若图中存在负环,输出仅一行 $-1$。 若图中不存在负环: 输出 $n$ 行:令 $dis_{i,j}$ 为从 $i$ 到 $j$ 的短路,在第 $i$ 行输出 $\sum\limits_{j=1}^n j\times dis_{i,j}$,注意这个结果可能超过 int 存储范围。 如果不存在从 $i$ 到 $j$ 的路径,则 $dis_{i,j}=10^9$;如果 $i=j$,则 $dis_{i,j}=0$。 ## 输入输出样例 #1 ### 输入 #1 ``` 5 7 1 2 4 1 4 10 2 3 7 4 5 3 4 2 -2 3 4 -3 5 3 4 ``` ### 输出 #1 ``` 128 1000000072 999999978 1000000026 1000000014 ``` ## 输入输出样例 #2 ### 输入 #2 ``` 5 5 1 2 4 3 4 9 3 4 -3 4 5 3 5 3 -2 ``` ### 输出 #2 ``` -1 ``` ## 说明/提示 【样例解释】 左图为样例 $1$ 给出的有向图,短路构成的答案矩阵为: ``` 0 4 11 8 11 1000000000 0 7 4 7 1000000000 -5 0 -3 0 1000000000 -2 5 0 3 1000000000 -1 4 1 0 ``` 右图为样例 $2$ 给出的有向图,红色标注的边构成了负环,注意给出的图不一定连通。 ![](https://cdn.luogu.com.cn/upload/image_hosting/7lb35u4u.png) 【数据范围】 对于 $100\%$ 的数据,$1\leq n\leq 3\times 10^3,\ \ 1\leq m\leq 6\times 10^3,\ \ 1\leq u,v\leq n,\ \ -3\times 10^5\leq w\leq 3\times 10^5$。 对于 $20\%$ 的数据,$1\leq n\leq 100$,不存在负环(可用于验证 Floyd 正确性) 对于另外 $20\%$ 的数据,$w\ge 0$(可用于验证 Dijkstra 正确性) upd. 添加一组 Hack 数据:针对 SPFA 的 SLF 优化
最新发布
07-18
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值