Day 3 Multiple Linear Regression

1 概念

多元线性回归是对简单线性回归的推广,同时有着不同于简单线性回归的特性。

多元线性回归(Multiple Linear Regression)尝试通过已知数据找到一个线性方程来描述两个及以上的特征(自变量)与输出(因变量)之间的关系,并用这个线性方程来预测结果。

多元线性回归的数学形式如下:

应用多元线性回归时,我们需要关注不同变量对预测结果的影响,以及不同的变量之间有什么联系

2使用多元线性回归分析的前提

线性:自变量和因变量线性相关

同方差性:随机误差项的方差应为常数,也就是说样本残差的平方 e_t^2 不随自变量的变化而变化

多元正态:残差应符合正态分布

低多重共线性:使用多元线性回归时,如果特征(自变量)之间高度相关,会使回归估计不准确,称为多重共线性。我们需要保证数据没有或具有较低的多重共线性

3 变量的选择

使用太多的变量可能会导致模型变得不精确,尤其是存在对输出结果没有影响或者对其它变量有较大影响的变量时。选择变量可以采用以下几种方法:

  • 向前选择法:从没有变量开始,使用某种标准,选择对拟合结果改进最大的变量,重复这个过程直到增加新的变量对结果没有明显的改善。
  • 向后剔除法:从具有多个候选变量开始,使用某种标准,评估去除变量对拟合结果的负面影响,逐个去除影响最小的变量,直到去除每个变量都会对结果造成重要的负面影响。
  • 双向对比法

4 虚拟变量

要想在回归模型中使用非数值数据类型,可以把它们视为分类数据

分类数据,是指反应事物类型的离散数据(固定且无序),比如性别(男/女)。在模型中,我们可以用虚拟变量来表示这种数据。虚拟变量通常使用 1、0 这样的值来表示肯定或否定的含义。

5 虚拟变量陷阱

虚拟变量陷阱指两个或多个变量之间高度相关的情形。简单的说就是一个变量可以通过其它变量预测。例如男性类别可以通过女性类别判断(女性值为 0 时,表示男性),所以对于男女问题,变量应该只有一元。

假设有 m 个相互关联的类别,为了解决虚拟变量陷阱,可以在模型构建时只选取 m-1 个虚拟变量。

数据集50_Startups.csv

R&D Spend,Administration,Marketing Spend,State,Profit
165349.2,136897.8,471784.1,New York,192261.83
162597.7,151377.59,443898.53,California,191792.06
153441.51,101145.55,407934.54,Florida,191050.39
144372.41,118671.85,383199.62,New York,182901.99
142107.34,91391.77,366168.42,Florida,166187.94
131876.9,99814.71,362861.36,New York,156991.12
134615.46,147198.87,127716.82,California,156122.51
130298.13,145530.06,323876.68,Florida,155752.6
120542.52,148718.95,311613.29,New York,152211.77
123334.88,108679.17,304981.62,California,149759.96
101913.08,110594.11,229160.95,Florida,146121.95
100671.96,91790.61,249744.55,California,144259.4
93863.75,127320.38,249839.44,Florida,141585.52
91992.39,135495.07,252664.93,California,134307.35
119943.24,156547.42,256512.92,Florida,132602.65
114523.61,122616.84,261776.23,New York,129917.04
78013.11,121597.55,264346.06,California,126992.93
94657.16,145077.58,282574.31,New York,125370.37
91749.16,114175.79,294919.57,Florida,124266.9
86419.7,153514.11,0,New York,122776.86
76253.86,113867.3,298664.47,California,118474.03
78389.47,153773.43,299737.29,New York,111313.02
73994.56,122782.75,303319.26,Florida,110352.25
67532.53,105751.03,304768.73,Florida,108733.99
77044.01,99281.34,140574.81,New York,108552.04
64664.71,139553.16,137962.62,California,107404.34
75328.87,144135.98,134050.07,Florida,105733.54
72107.6,127864.55,353183.81,New York,105008.31
66051.52,182645.56,118148.2,Florida,103282.38
65605.48,153032.06,107138.38,New York,101004.64
61994.48,115641.28,91131.24,Florida,99937.59
61136.38,152701.92,88218.23,New York,97483.56
63408.86,129219.61,46085.25,California,97427.84
55493.95,103057.49,214634.81,Florida,96778.92
46426.07,157693.92,210797.67,California,96712.8
46014.02,85047.44,205517.64,New York,96479.51
28663.76,127056.21,201126.82,Florida,90708.19
44069.95,51283.14,197029.42,California,89949.14
20229.59,65947.93,185265.1,New York,81229.06
38558.51,82982.09,174999.3,California,81005.76
28754.33,118546.05,172795.67,California,78239.91
27892.92,84710.77,164470.71,Florida,77798.83
23640.93,96189.63,148001.11,California,71498.49
15505.73,127382.3,35534.17,New York,69758.98
22177.74,154806.14,28334.72,California,65200.33
1000.23,124153.04,1903.93,New York,64926.08
1315.46,115816.21,297114.46,Florida,49490.75
0,135426.92,0,California,42559.73
542.05,51743.15,0,New York,35673.41
0,116983.8,45173.06,California,14681.4

 

 

import streamlit as st import pandas as pd import numpy as np import joblib import os import time import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.font_manager as fm import seaborn as sns from pyspark.sql import SparkSession from pyspark.ml.feature import VectorAssembler, StandardScaler from pyspark.ml.classification import LogisticRegression, DecisionTreeClassifier, RandomForestClassifier from pyspark.ml.evaluation import BinaryClassificationEvaluator from pyspark.ml.tuning import ParamGridBuilder, CrossValidator from pyspark.sql.functions import when, col from sklearn.metrics import classification_report, confusion_matrix import warnings import dask.dataframe as dd from dask.diagnostics import ProgressBar from dask_ml.preprocessing import StandardScaler as DaskStandardScaler import tempfile warnings.filterwarnings("ignore") plt.rcParams[&#39;font.sans-serif&#39;] = [&#39;SimHei&#39;] plt.rcParams[&#39;axes.unicode_minus&#39;] = False # 页面设置 st.set_page_config( page_title="单宽转融用户预测系统", page_icon="📶", layout="wide", initial_sidebar_state="expanded" ) # 自定义CSS样式 st.markdown(""" <style> .stApp { background: linear-gradient(135deg, #f5f7fa 0%, #e4edf5 100%); font-family: &#39;Helvetica Neue&#39;, Arial, sans-serif; } .header { background: linear-gradient(90deg, #2c3e50 0%, #4a6491 100%); color: white; padding: 1.5rem; border-radius: 0.75rem; box-shadow: 0 4px 12px rgba(0,0,0,0.1); margin-bottom: 2rem; } .card { background: white; border-radius: 0.75rem; padding: 1.5rem; margin-bottom: 1.5rem; box-shadow: 0 4px 12px rgba(0,0,0,0.08); transition: transform 0.3s ease; } .card:hover { transform: translateY(-5px); box-shadow: 0 6px 16px rgba(0,0,0,0.12); } .stButton button { background: linear-gradient(90deg, #3498db 0%, #1a5276 100%) !important; color: white !important; border: none !important; border-radius: 0.5rem; padding: 0.75rem 1.5rem; font-size: 1rem; font-weight: 600; transition: all 0.3s ease; width: 100%; } .stButton button:hover { transform: scale(1.05); box-shadow: 0 4px 8px rgba(52, 152, 219, 0.4); } .feature-box { background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%); border-radius: 0.75rem; padding: 1.5rem; margin-bottom: 1.5rem; } .result-box { background: linear-gradient(135deg, #e8f5e9 0%, #c8e6c9 100%); border-radius: 0.75rem; padding: 1.5rem; margin-top: 1.5rem; } .model-box { background: linear-gradient(135deg, #fff3e0 0%, #ffe0b2 100%); border-radius: 0.75rem; padding: 1.5rem; margin-top: 1.5rem; } .stProgress > div > div > div { background: linear-gradient(90deg, #2ecc71 0%, #27ae60 100%) !important; } .metric-card { background: white; border-radius: 0.75rem; padding: 1rem; text-align: center; box-shadow: 0 4px 8px rgba(0,0,0,0.06); } .metric-value { font-size: 1.8rem; font-weight: 700; color: #2c3e50; } .metric-label { font-size: 0.9rem; color: #7f8c8d; margin-top: 0.5rem; } .highlight { background: linear-gradient(90deg, #ffeb3b 0%, #fbc02d 100%); padding: 0.2rem 0.5rem; border-radius: 0.25rem; font-weight: 600; } .stDataFrame { border-radius: 0.75rem; box-shadow: 0 4px 8px rgba(0,0,0,0.06); } .risk-high { background-color: #ffcdd2 !important; color: #c62828 !important; font-weight: 700; } .risk-medium { background-color: #fff9c4 !important; color: #f57f17 !important; font-weight: 600; } .risk-low { background-color: #c8e6c9 !important; color: #388e3c !important; } </style> """, unsafe_allow_html=True) def preprocess_data(ddf): """ 使用Dask进行数据预处理,支持大数据处理 参数: ddf (dask.DataFrame): 原始数据 返回: processed_ddf (dask.DataFrame): 处理后的数据 feature_cols (list): 特征列名列表 """ # 创建副本以避免修改原始数据 processed_ddf = ddf.copy() # 1. 删除无意义特征 drop_cols = [&#39;BIL_MONTH&#39;, &#39;ASSET_ROW_ID&#39;, &#39;CCUST_ROW_ID&#39;, &#39;BELONG_CITY&#39;, &#39;MKT_CHANNEL_NAME&#39;, &#39;MKT_CHANNEL_SUB_NAME&#39;, &#39;PREPARE_FLG&#39;, &#39;SERV_START_DT&#39;, &#39;COMB_STAT_NAME&#39;, &#39;FIBER_ACCESS_CATEGORY&#39;] # 检查并删除存在的列 existing_cols = [col for col in drop_cols if col in processed_ddf.columns] processed_ddf = processed_ddf.drop(columns=existing_cols) # 2. 处理缺失值 # 数值型特征用均值填充 numeric_cols = processed_ddf.select_dtypes(include=[np.number]).columns.tolist() if &#39;is_rh_next&#39; in numeric_cols: numeric_cols.remove(&#39;is_rh_next&#39;) # 计算均值(Dask需要先persist) with ProgressBar(): means = processed_ddf[numeric_cols].mean().compute() # 填充缺失值 for col in numeric_cols: processed_ddf[col] = processed_ddf[col].fillna(means[col]) # 类别型特征用"Unknown"填充 object_cols = processed_ddf.select_dtypes(include=[&#39;object&#39;]).columns.tolist() for col in object_cols: processed_ddf[col] = processed_ddf[col].fillna("Unknown") # 3. 离散特征编码 # 对二元特征进行简单映射 binary_cols = [&#39;IF_YHTS&#39;, &#39;is_kdts&#39;, &#39;is_itv_up&#39;, &#39;is_mobile_up&#39;, &#39;if_zzzw_up&#39;] for col in binary_cols: if col in processed_ddf.columns: processed_ddf[col] = processed_ddf[col].map({&#39;否&#39;: 0, &#39;是&#39;: 1, 0: 0, 1: 1, &#39;Unknown&#39;: -1}) # 对性别进行映射 if &#39;GENDER&#39; in processed_ddf.columns: gender_mapping = {&#39;男&#39;: 0, &#39;女&#39;: 1, &#39;Unknown&#39;: -1} processed_ddf[&#39;GENDER&#39;] = processed_ddf[&#39;GENDER&#39;].map(gender_mapping) # 4. 用户星级映射 if &#39;MKT_STAR_GRADE_NAME&#39; in processed_ddf.columns: star_mapping = { &#39;五星级&#39;: 5, &#39;四星级&#39;: 4, &#39;三星级&#39;: 3, &#39;二星级&#39;: 2, &#39;一星级&#39;: 1, &#39;Unknown&#39;: 0 } processed_ddf[&#39;MKT_STAR_GRADE_NAME&#39;] = processed_ddf[&#39;MKT_STAR_GRADE_NAME&#39;].map(star_mapping) # 5. 特征工程 # 计算消费比率(套餐价格/出账金额) if &#39;PROM_AMT&#39; in processed_ddf.columns and &#39;STMT_AMT&#39; in processed_ddf.columns: processed_ddf[&#39;CONSUMPTION_RATIO&#39;] = processed_ddf[&#39;PROM_AMT&#39;] / (processed_ddf[&#39;STMT_AMT&#39;] + 1) # 计算流量使用密度(下载流量/在网天数) if &#39;DWN_VOL&#39; in processed_ddf.columns and &#39;ONLINE_DAY&#39; in processed_ddf.columns: processed_ddf[&#39;TRAFFIC_DENSITY&#39;] = processed_ddf[&#39;DWN_VOL&#39;] / (processed_ddf[&#39;ONLINE_DAY&#39;] + 1) # 是否有终端设备 if &#39;TERM_CNT&#39; in processed_ddf.columns: processed_ddf[&#39;HAS_TERMINAL&#39;] = (processed_ddf[&#39;TERM_CNT&#39;] > 0).astype(int) # 6. 标准化处理 scaler = DaskStandardScaler() numeric_cols_for_scaling = list(set(numeric_cols) - set([&#39;is_rh_next&#39;])) if len(numeric_cols_for_scaling) > 0: processed_ddf[numeric_cols_for_scaling] = scaler.fit_transform(processed_ddf[numeric_cols_for_scaling]) # 保存特征列 feature_cols = [col for col in processed_ddf.columns if col != &#39;is_rh_next&#39;] return processed_ddf, feature_cols, means, numeric_cols_for_scaling, scaler def create_spark_session(): """创建或获取现有的Spark会话""" return SparkSession.builder \ .appName("SingleToMeltUserPrediction") \ .config("spark.sql.shuffle.partitions", "8") \ .config("spark.driver.memory", "8g") \ .config("spark.executor.memory", "8g") \ .getOrCreate() def train_models(spark_df, feature_cols): """ 使用Spark训练多个模型并评估性能 参数: spark_df (pyspark.sql.DataFrame): 处理后的数据 feature_cols (list): 特征列名列表 返回: results (dict): 包含训练好的模型及其性能指标 """ # 初始化Spark会话 spark = create_spark_session() # 将特征列组合为特征向量 assembler = VectorAssembler(inputCols=feature_cols, outputCol="rawFeatures") assembled_df = assembler.transform(spark_df) # 标准化特征 scaler = StandardScaler(inputCol="rawFeatures", outputCol="features") scaler_model = scaler.fit(assembled_df) scaled_df = scaler_model.transform(assembled_df) # 划分训练集和测试集 train_df, test_df = scaled_df.randomSplit([0.8, 0.2], seed=42) # 定义评估器 lr = LogisticRegression(featuresCol="features", labelCol="is_rh_next") dt = DecisionTreeClassifier(featuresCol="features", labelCol="is_rh_next") rf = RandomForestClassifier(featuresCol="features", labelCol="is_rh_next", numTrees=10) # 定义参数网格 lr_param_grid = ParamGridBuilder() \ .addGrid(lr.regParam, [0.01, 0.1]) \ .addGrid(lr.elasticNetParam, [0.0, 0.5]) \ .build() dt_param_grid = ParamGridBuilder() \ .addGrid(dt.maxDepth, [5, 10]) \ .addGrid(dt.minInstancesPerNode, [10, 20]) \ .build() rf_param_grid = ParamGridBuilder() \ .addGrid(rf.numTrees, [10, 20]) \ .addGrid(rf.maxDepth, [5, 10]) \ .build() # 定义交叉验证器 evaluator = BinaryClassificationEvaluator(labelCol="is_rh_next", metricName="areaUnderROC") lr_cv = CrossValidator(estimator=lr, estimatorParamMaps=lr_param_grid, evaluator=evaluator, numFolds=3) dt_cv = CrossValidator(estimator=dt, estimatorParamMaps=dt_param_grid, evaluator=evaluator, numFolds=3) rf_cv = CrossValidator(estimator=rf, estimatorParamMaps=rf_param_grid, evaluator=evaluator, numFolds=3) # 训练模型 results = {} # 逻辑回归 with st.spinner("正在训练逻辑回归模型..."): lr_model = lr_cv.fit(train_df) lr_predictions = lr_model.transform(test_df) lr_auc = evaluator.evaluate(lr_predictions) lr_accuracy = lr_predictions.filter(lr_predictions.is_rh_next == lr_predictions.prediction).count() / test_df.count() results["logistic_regression"] = { "model": lr_model, "auc": lr_auc, "accuracy": lr_accuracy, "best_params": lr_model.bestModel._java_obj.parent().extractParamMap() } # 决策树 with st.spinner("正在训练决策树模型..."): dt_model = dt_cv.fit(train_df) dt_predictions = dt_model.transform(test_df) dt_auc = evaluator.evaluate(dt_predictions) dt_accuracy = dt_predictions.filter(dt_predictions.is_rh_next == dt_predictions.prediction).count() / test_df.count() results["decision_tree"] = { "model": dt_model, "auc": dt_auc, "accuracy": dt_accuracy, "best_params": dt_model.bestModel._java_obj.parent().extractParamMap(), "feature_importances": dt_model.bestModel.featureImportances.toArray().tolist() } # 随机森林 with st.spinner("正在训练随机森林模型..."): rf_model = rf_cv.fit(train_df) rf_predictions = rf_model.transform(test_df) rf_auc = evaluator.evaluate(rf_predictions) rf_accuracy = rf_predictions.filter(rf_predictions.is_rh_next == rf_predictions.prediction).count() / test_df.count() results["random_forest"] = { "model": rf_model, "auc": rf_auc, "accuracy": rf_accuracy, "best_params": rf_model.bestModel._java_obj.parent().extractParamMap(), "feature_importances": rf_model.bestModel.featureImportances.toArray().tolist() } return results # 标题区域 st.markdown(""" <div class="header"> <h1 style=&#39;text-align: center; margin: 0;&#39;>单宽转融用户预测系统</h1> <p style=&#39;text-align: center; margin: 0.5rem 0 0; font-size: 1.1rem;&#39;>基于大数据挖掘的精准营销分析平台</p> </div> """, unsafe_allow_html=True) # 页面布局 col1, col2 = st.columns([1, 1.5]) # 左侧区域 - 图片和简介 with col1: st.markdown(""" <div class="card"> <h3 style=&#39;text-align: center; color: #2c3e50;&#39;>精准营销系统</h3> <p style=&#39;text-align: center;&#39;>利用先进数据挖掘技术识别潜在融合套餐用户</p> </div> """, unsafe_allow_html=True) # 使用在线图片作为占位符 st.image("https://images.unsplash.com/photo-1550751822256-00808c92fc8d?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=1200&q=80", caption="精准营销示意图", use_column_width=True) st.markdown(""" <div class="feature-box"> <h4>📈 系统功能</h4> <ul> <li>用户转化预测</li> <li>多模型对比分析</li> <li>特征重要性分析</li> <li>可视化数据洞察</li> </ul> </div> """, unsafe_allow_html=True) # 右侧区域 - 功能选择 with col2: st.markdown(""" <div class="card"> <h3 style=&#39;color: #2c3e50;&#39;>请选择操作类型</h3> <p>您可以选择训练新模型或查看现有模型分析结果</p> </div> """, unsafe_allow_html=True) # 功能选择 option = st.radio("", ["🚀 训练新模型 - 使用新数据训练预测模型", "🔍 模型分析 - 查看现有模型的分析结果"], index=0, label_visibility="hidden") # 模型训练部分 if "训练新模型" in option: st.markdown(""" <div class="model-box"> <h4>模型训练</h4> <p>上传训练数据并训练新的预测模型</p> </div> """, unsafe_allow_html=True) # 上传训练数据 train_file = st.file_uploader("上传训练数据 (CSV格式)", type=["csv"], accept_multiple_files=False) if train_file is not None: try: # 使用Dask读取大文件 with tempfile.TemporaryDirectory() as tmpdir: tmp_path = os.path.join(tmpdir, "large_file.csv") with open(tmp_path, "wb") as f: f.write(train_file.read()) # 分块读取配置 chunksize = 10**6 # 1MB每块 raw_ddf = dd.read_csv(tmp_path, blocksize=chunksize, assume_missing=True, dtype={&#39;is_rh_next&#39;: &#39;int8&#39;}) # 显示数据预览 with st.expander("数据预览", expanded=True): st.dataframe(raw_ddf.head(1000, npartitions=1).compute()) col1, col2 = st.columns(2) col1.metric("总样本数", f"{raw_ddf.shape[0].compute():,}") col2.metric("特征数量", raw_ddf.shape[1].compute() - 1) # 检查目标变量是否存在 if &#39;is_rh_next&#39; not in raw_ddf.columns: st.warning("⚠️ 注意:未找到目标变量 &#39;is_rh_next&#39;") # 数据预处理按钮 if st.button("开始数据预处理", use_container_width=True): with st.spinner("正在进行数据预处理,请稍候..."): processed_ddf, feature_cols, means, numeric_cols_for_scaling, scaler = preprocess_data(raw_ddf) # 保存预处理参数 preprocessor_params = { &#39;means&#39;: means, &#39;numeric_cols_for_scaling&#39;: numeric_cols_for_scaling, &#39;scaler&#39;: scaler, &#39;feature_cols&#39;: feature_cols } joblib.dump(preprocessor_params, &#39;preprocessor_params.pkl&#39;) # 保存处理后的数据 processed_ddf.to_csv(&#39;processed_data_*.csv&#39;, index=False) st.success("✅ 数据预处理完成!") # 显示处理后的数据统计 st.subheader("数据质量检查") col1, col2 = st.columns(2) col1.write("缺失值统计:") col1.write(processed_df.isnull().sum()[processed_df.isnull().sum() > 0]) col2.write("异常值检测:") for col in processed_df[feature_cols]: q1 = processed_df[col].quantile(0.25) q3 = processed_df[col].quantile(0.75) iqr = q3 - q1 outlier_count = ((processed_df[col] < (q1 - 1.5 * iqr)) | (processed_df[col] > (q3 + 1.5 * iqr))).sum() if outlier_count > 0: col2.write(f"{col}: {outlier_count} 个异常值") # 可视化关键特征分布 st.subheader("关键特征分布") fig, axes = plt.subplots(2, 2, figsize=(12, 10)) sns.histplot(processed_df[&#39;AGE&#39;], ax=axes[0, 0], kde=True) sns.histplot(processed_df[&#39;ONLINE_DAY&#39;], ax=axes[0, 1], kde=True) sns.histplot(processed_df[&#39;PROM_AMT&#39;], ax=axes[1, 0], kde=True) sns.histplot(processed_df[&#39;DWN_VOL&#39;], ax=axes[1, 1], kde=True) plt.tight_layout() st.pyplot(fig) # 目标变量分布 st.subheader("目标变量分布") fig, ax = plt.subplots(figsize=(6, 4)) sns.countplot(x=&#39;is_rh_next&#39;, data=processed_df, ax=ax) ax.set_xlabel("是否转化 (0=未转化, 1=转化)") ax.set_ylabel("用户数量") ax.set_title("用户转化分布") st.pyplot(fig) # 特征与目标变量相关性 st.subheader("特征与转化的相关性") correlation = processed_df[feature_cols + [&#39;is_rh_next&#39;]].corr()[&#39;is_rh_next&#39;].sort_values(ascending=False) fig, ax = plt.subplots(figsize=(10, 6)) sns.barplot(x=correlation.values, y=correlation.index, ax=ax) ax.set_title("特征与转化的相关性") st.pyplot(fig) # 模型训练按钮 if st.button("开始模型训练", use_container_width=True): if not os.path.exists(&#39;processed_data.csv&#39;): st.error("请先进行数据预处理") else: # 加载处理后的数据 processed_df = pd.read_csv(&#39;processed_data.csv&#39;) preprocessor_params = joblib.load(&#39;preprocessor_params.pkl&#39;) feature_cols = preprocessor_params[&#39;feature_cols&#39;] # 转换为Spark DataFrame spark = create_spark_session() spark_df = spark.createDataFrame(processed_df) # 训练模型 with st.spinner("正在训练模型,请耐心等待..."): results = train_models(spark_df, feature_cols) # 保存模型结果 joblib.dump(results, &#39;model_results.pkl&#39;) st.success("🎉 模型训练完成!") # 显示模型比较 st.subheader("模型性能对比") model_performance = pd.DataFrame({ &#39;模型&#39;: [&#39;逻辑回归&#39;, &#39;决策树&#39;, &#39;随机森林&#39;], &#39;准确率&#39;: [results[&#39;logistic_regression&#39;][&#39;accuracy&#39;], results[&#39;decision_tree&#39;][&#39;accuracy&#39;], results[&#39;random_forest&#39;][&#39;accuracy&#39;]], &#39;AUC&#39;: [results[&#39;logistic_regression&#39;][&#39;auc&#39;], results[&#39;decision_tree&#39;][&#39;auc&#39;], results[&#39;random_forest&#39;][&#39;auc&#39;]] }).sort_values(&#39;AUC&#39;, ascending=False) st.table(model_performance.style.format({ &#39;准确率&#39;: &#39;{:.2%}&#39;, &#39;AUC&#39;: &#39;{:.4f}&#39; })) # 最佳模型特征重要性 best_model_name = model_performance.iloc[0][&#39;模型&#39;] model_map = { &#39;逻辑回归&#39;: &#39;logistic_regression&#39;, &#39;决策树&#39;: &#39;decision_tree&#39;, &#39;随机森林&#39;: &#39;random_forest&#39; } best_model_key = model_map[best_model_name] best_model = results[best_model_key][&#39;model&#39;].bestModel st.subheader(f"最佳模型 ({best_model_name}) 分析") if best_model_key in [&#39;decision_tree&#39;, &#39;random_forest&#39;]: feature_importances = results[best_model_key][&#39;feature_importances&#39;] importance_df = pd.DataFrame({ &#39;特征&#39;: feature_cols, &#39;重要性&#39;: feature_importances }).sort_values(&#39;重要性&#39;, ascending=False).head(10) fig, ax = plt.subplots(figsize=(10, 6)) sns.barplot(x=&#39;重要性&#39;, y=&#39;特征&#39;, data=importance_df, ax=ax) ax.set_title(&#39;Top 10 重要特征&#39;) st.pyplot(fig) # 显示最佳模型参数 st.subheader("最佳模型参数") params = results[best_model_key][&#39;best_params&#39;] param_table = pd.DataFrame({ &#39;参数&#39;: [str(param.name) for param in params.keys()], &#39;值&#39;: [str(value) for value in params.values()] }) st.table(param_table) except Exception as e: st.error(f"数据处理错误: {str(e)}") # 模型分析部分 else: st.markdown(""" <div class="model-box"> <h4>模型分析</h4> <p>查看已有模型的详细分析结果</p> </div> """, unsafe_allow_html=True) if not os.path.exists(&#39;model_results.pkl&#39;): st.info("ℹ️ 当前没有可用模型。请先进行模型训练以生成分析报告。") # 显示可执行的操作 col1, col2 = st.columns(2) with col1: st.markdown(""" <div class="card"> <h4>🛠️ 数据准备</h4> <p>确保您已准备好符合要求的数据文件,包含所有必要的特征字段。</p> </div> """, unsafe_allow_html=True) with col2: st.markdown(""" <div class="card"> <h4>🧠 模型训练</h4> <p>切换到“训练新模型”选项卡,上传您的数据并开始训练过程。</p> </div> """, unsafe_allow_html=True) else: # 加载模型结果 results = joblib.load(&#39;model_results.pkl&#39;) preprocessor_params = joblib.load(&#39;preprocessor_params.pkl&#39;) feature_cols = preprocessor_params[&#39;feature_cols&#39;] # 模型选择 model_choice = st.selectbox( "选择要分析的模型", ("逻辑回归", "决策树", "随机森林") ) model_map = { &#39;逻辑回归&#39;: &#39;logistic_regression&#39;, &#39;决策树&#39;: &#39;decision_tree&#39;, &#39;随机森林&#39;: &#39;random_forest&#39; } model_key = model_map[model_choice] # 显示模型基本信息 model_info = results[model_key] st.markdown(f""" <div class="card"> <h3>{model_choice}</h3> <p><strong>AUC得分:</strong> {model_info[&#39;auc&#39;]:.4f}</p> <p><strong>准确率:</strong> {model_info[&#39;accuracy&#39;]:.2%}</p> </div> """, unsafe_allow_html=True) # 显示参数详情 with st.expander("模型参数详情", expanded=False): params = model_info[&#39;best_params&#39;] param_table = pd.DataFrame({ &#39;参数&#39;: [str(param.name) for param in params.keys()], &#39;值&#39;: [str(value) for value in params.values()] }) st.table(param_table) # 如果存在特征重要性信息 if model_key in [&#39;decision_tree&#39;, &#39;random_forest&#39;]: feature_importances = model_info[&#39;feature_importances&#39;] importance_df = pd.DataFrame({ &#39;特征&#39;: feature_cols, &#39;重要性&#39;: feature_importances }).sort_values(&#39;重要性&#39;, ascending=False) st.subheader("特征重要性分析") # Top 10 重要特征 top_features = importance_df.head(10) fig, ax = plt.subplots(figsize=(10, 6)) sns.barplot(x=&#39;重要性&#39;, y=&#39;特征&#39;, data=top_features, ax=ax) ax.set_title(&#39;Top 10 重要特征&#39;) st.pyplot(fig) # 所有特征的重要性分布 fig, ax = plt.subplots(figsize=(10, 6)) sns.histplot(importance_df[&#39;重要性&#39;], bins=20, ax=ax) ax.set_title(&#39;特征重要性分布&#39;) st.pyplot(fig) # 显示具体数值 st.write("特征重要性详细数据:") st.dataframe(importance_df.style.background_gradient(subset=[&#39;重要性&#39;], cmap=&#39;viridis&#39;)) # 模型比较 st.subheader("与其他模型的对比") model_performance = pd.DataFrame({ &#39;模型&#39;: [&#39;逻辑回归&#39;, &#39;决策树&#39;, &#39;随机森林&#39;], &#39;准确率&#39;: [results[&#39;logistic_regression&#39;][&#39;accuracy&#39;], results[&#39;decision_tree&#39;][&#39;accuracy&#39;], results[&#39;random_forest&#39;][&#39;accuracy&#39;]], &#39;AUC&#39;: [results[&#39;logistic_regression&#39;][&#39;auc&#39;], results[&#39;decision_tree&#39;][&#39;auc&#39;], results[&#39;random_forest&#39;][&#39;auc&#39;]] }).sort_values(&#39;AUC&#39;, ascending=False) fig, ax = plt.subplots(figsize=(10, 6)) model_performance.set_index(&#39;模型&#39;)[[&#39;AUC&#39;, &#39;准确率&#39;]].plot(kind=&#39;bar&#39;, ax=ax) ax.set_title(&#39;模型性能对比&#39;) ax.set_ylabel(&#39;评分&#39;) plt.xticks(rotation=0) st.pyplot(fig) st.table(model_performance.style.format({ &#39;准确率&#39;: &#39;{:.2%}&#39;, &#39;AUC&#39;: &#39;{:.4f}&#39; }).apply(lambda x: [&#39;background: lightgreen&#39; if x.name == model_performance.index[0] else &#39;&#39; for _ in x])) # 页脚 st.markdown("---") st.markdown(""" <div style="text-align: center; color: #7f8c8d; font-size: 0.9rem; padding: 1rem;"> © 2023 单宽转融用户预测系统 | 2231030273 基于Streamlit和Spark开发 </div> """, unsafe_allow_html=True) 修改上述代码使其能读取大于200MB的csv文件,并给出完整修改后代码
最新发布
06-28
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值