✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
规划设计是微电网系统核心技术体系之一。从分布式电源的综合优化 (组合优化、容量优化) 和分布式电源间的调度优化两个方面对其展开研究。根据分布式电源特性,提出了适用于并网型微电网系统和独立型微电网系统的双层优化规划设计模型。上层优化采用综合目标计算系统最优配置;下层优化采用混合整数线性规划算法 (MILP) 计算系统最优运行方案。运用所建立模型,分别针对并网型和独立型微电网系统作了案例计算,验证了所提方法的正确性。
一、引言
微电网系统可将多种类型的分布式发电单元组合在一起,有效发挥单一能源系统的优点,实现多种能源互补,提高整个微电网系统的效率、能源利用率和供电可靠性。通过对该微电网的控制,可实现微电网的孤岛和并网运行。在优化规划设计中,忽略线路阻抗引起的损耗。
在规划设计的过程中,需要考虑可再生能源的间歇性、灵活多变的系统组合方案和不同系统运行控制策略,这些因素的存在使微电网系统优化规划变得较为复杂。本文将从分布式电源的综合优化 (优化组合、优化容量) 和分布式电源间的优化调度两个方面出发,对微电网系统优化规划展开研究。
然而,目前的研究并不能同时应用于并网型和独立型微电网系统的规划设计,在微电网系统分布式电源综合优化方面,较少考虑微电网系统分布式电源类型的优化,在分布式电源优化调度方面,大多采用固定策略作为系统的控制策略,较少考虑分布式电源间的优化运行。本文根据光伏、风能发电等分布式电源特性,提出了适用于并网型微电网系统和独立型微电网系统的双层优化规划设计模型,上层优化采用基于 NSGA-II 的多目标遗传算法计算系统最优配置,模型中考虑了分布式电源的类型优化、容量优化和组合优化;下层优化采用混合整数线性规划算法计算系统最优运行方案,实现系统的动态经济最优调度。运用本文建立模型,分别针对并网型和独立型微电网系统作了案例计算,验证了所提方法的正确性,得出了具有参考意义的结论。
二、微电网系统双层规划设计结构
本文采用双层优化规划方法对微电网系统进行优化,上层为容量优化模块,用于寻找系统最优配置,包括系统各设备类型、台数和容量,下层为调度优化模块,用于计算系统最优运行方案。双层优化含有两个层次,上层决策结果一般会影响下层目标和约束条件,而下层则将决策结果反馈给上层,从而实现上下层决策的相互作用。
Bracken J 和 McGill J T 于 1973 年最早提出了多层规划的概念,已解决多层规划 / 优化问题,双层规划是多层规划的特例。双层规划在输电系统、无功优化、配电系统优化规划等领域已有研究报道。数学上双层优化可描述为:
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇