%% I. 清空环境变量
clear all
clc
%% II. 导入数据
load citys_data.mat
%% III. 计算城市间相互距离
n = size(citys, 1); % 城市的个数
D = zeros(n, n);
for i = 1:n
for j = 1:n
if i ~= j
D(i, j) = sqrt(sum((citys(i, :)-citys(j, :)).^2));
else
D(i, j) = 1e-4;
end
end
end
%% IV. 初始化参数
m = 50; % 蚂蚁数量
alpha = 1; % 信息素重要程度因子
beta = 5; % 启发函数重要程度因子
rho = 0.1; % 信息素挥发因子
Q = 1; % 常系数
Eta = 1./D; % 启发函数
Tau = ones(n, n); % 信息素矩阵
Table = zeros(m, n); % 路径记录表
iter = 1; % 迭代次数初值
iter_max = 200; % 最大迭代次数
Route_best = zeros(iter_max, n); % 各代最佳路径
Length_best = zeros(iter_max, 1); % 各代最佳路径长度
Length_ave = zeros(iter_max, 1); % 各代路径的平均长度
%% V. 迭代寻找最佳路径
while iter <= iter_max
iter
% 随机产生各个蚂蚁的起点城市
start = zeros(m, 1);
for i = 1:m
temp = randperm(n); % 1~n的随机排列
start(i) = temp(1);
end
Table(:, 1) = start;
citys_index = 1:n; % 城市索引
% 逐个蚂蚁路径选择
for i = 1:m
% 逐个城市路径选择
for j = 2:n
tabu = Table(i, 1:(j-1)); % 已访问的城市集合(禁忌表)
allow_index = ~ismember(citys_index, tabu);
allow = citys_index(allow_index); % 待访问的城市集合
P = allow;
% 计算城市间转移概率
for k = 1:length(allow)
P(k) = Tau(tabu(end), allow(k))^alpha * Eta(tabu(end), allow(k))^beta;
end
P = P / sum(P);
% 轮盘赌法选择下一个访问城市
Pc = cumsum(P);
target_index = find(Pc>=rand);
target = allow(target_index(1));
Table(i, j) = target;
end
end
% 计算各个蚂蚁的路径距离
Length = zeros(m, 1);
for i = 1:m
Route = Table(i, :);
for j = 1: (n-1)
Length(i) = Length(i) + D(Route(j), Route(j+1));
end
Length(i) = Length(i) + D(Route(n), Route(1));
end
% 计算最短路径距离及平均距离
if iter == 1
[min_Length, min_index] = min(Length);
Length_best(iter) = min_Length;
Length_ave(iter) =mean(Length);
Route_best(iter, :) = Table(min_index, :);
else
[min_Length, min_index] = min(Length);
Length_best(iter) = min(Length_best(iter-1), min_Length);
Length_ave(iter) = mean(Length);
if Length_best(iter) == min_Length
Route_best(iter, :) = Table(min_index, :);
else
Route_best(iter, :) = Route_best((iter-1), :);
end
end
% 更新信息素
Delta_Tau = zeros(n, n);
% 逐个蚂蚁计算
for i = 1:m
% 逐个城市计算
for j = 1:(n-1)
Delta_Tau(Table(i, j), Table(i, j+1)) = Delta_Tau(Table(i, j), Table(i, j+1)) + Q/Length(i);
end
Delta_Tau(Table(i, n), Table(i, 1)) = Delta_Tau(Table(i, n), Table(i, 1)) + Q/Length(i);
end
Tau = (1-rho) * Tau + Delta_Tau;
% 迭代次数加1, 清空路径记录表
iter = iter + 1;
Table = zeros(m, n);
end
%% VI. 结果显示
[Shortest_Length, index] = min(Length_best);
Shortest_Route = Route_best(index, :);
disp(['最短距离', num2str(Shortest_Length)]);
disp(['最短路径', num2str([Shortest_Route Shortest_Route(1)])]);
%% VII. 绘图
figure(1);
plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...
[citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');
grid on;
for i = 1:size(citys,1)
text(citys(i,1),citys(i,2),[' ' num2str(i)]);
end
text(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点');
text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点');
xlabel('城市位置横坐标')
ylabel('城市位置纵坐标')
title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')'])
figure(2)
plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:')
legend('最短距离','平均距离')
xlabel('迭代次数')
ylabel('距离')
title('各代最短距离与平均距离对比')
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
- 92.
- 93.
- 94.
- 95.
- 96.
- 97.
- 98.
- 99.
- 100.
- 101.
- 102.
- 103.
- 104.
- 105.
- 106.
- 107.
- 108.
- 109.
- 110.
- 111.
- 112.
- 113.
- 114.
- 115.
- 116.
- 117.
- 118.
- 119.
- 120.
- 121.
- 122.
- 123.
- 124.
- 125.
- 126.
- 127.
- 128.
- 129.
- 130.
- 131.
- 132.