clear;
% % high resolution optical and sar matching
% im_Ref = imread('.\data\optical_ref.png');
% im_Sen = imread('.\data\SAR_sen.png');
% CP_Check_file = '.\data\OpticaltoSAR_CP.txt';
% medium resolution optical and sar matching
im_Ref = imread('.\data\Optical_ref2.tif');
im_Sen = imread('.\data\SAR_sen2.tif');
CP_Check_file = '.\data\OpticaltoSAR2_CP.txt';
%lidar intensity and optical matching
% im_Ref = imread('.\data\LiDARintensity_ref.tif');
% im_Sen = imread('.\data\optical_sen.tif');
% CP_Check_file = '.\data\LiDARtoOptical_CP.txt';
%visible and infrared image matching
%im_Ref = imread('.\data\visible_ref.tif');
%im_Sen = imread('.\data\infrared_sen.tif');
%CP_Check_file = '.\data\VisibletoInfrared_CP.txt';
disthre = 1.5; % the threshod of match errors the deflaut is 1.5. for
% high resolution image covering urban areas, we
% should set it to a larger threshod (such as 2.0).
% This is beccause that the geometric distortions between such images
% is very complicated, and the transfrom model used
% by us (such as projective model) can only prefit
% the geometric distortion. Therefore, a larger threshod
% have the more flexibility
% template matching using DLSC
[CP_Ref,CP_Sen,CMR] = DLSC_match(im_Ref,im_Sen,CP_Check_file,disthre);
x= sprintf('the correct match ratio is %4.3f',CMR);
disp(x)
%diplay the tie points
figure;
imshow(im_Ref),hold on;
plot(CP_Ref(:,1),CP_Ref(:,2),'yo','MarkerEdgeColor','k','MarkerFaceColor','y','MarkerSize',5);hold on;
title('reference image');
figure;
imshow(im_Sen),hold on;
plot(CP_Sen(:,1),CP_Sen(:,2),'yo','MarkerEdgeColor','k','MarkerFaceColor','y','MarkerSize',5);hold on;
title('sensed image');
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.