一、简介

提取手部轮廓特征,k-means聚类算法,训练得到手势识别模型,然后用测试数据测试。【图像识别】基于k-means聚类的手势识别matlab 源码_matlab
1 K-means算法原理
K-means算法是最常用的一种聚类算法。算法的输入为一个样本集(或者称为点集),通过该算法可以将样本进行聚类,具有相似特征的样本聚为一类。

针对每个点,计算这个点距离所有中心点最近的那个中心点,然后将这个点归为这个中心点代表的簇。一次迭代结束之后,针对每个簇类,重新计算中心点,然后针对每个点,重新寻找距离自己最近的中心点。如此循环,直到前后两次迭代的簇类没有变化。

下面通过一个简单的例子,说明K-means算法的过程。如下图所示,目标是将样本点聚类成3个类别。
2 基本的步骤为:

step1:选定要聚类的类别数目k(如上例的k=3类),选择k个中心点。

step2:针对每个样本点,找到距离其最近的中心点(寻找组织),距离同一中心点最近的点为一个类,这样完成了一次聚类。

step3:判断聚类前后的样本点的类别情况是否相同,如果相同,则算法终止,否则进入step4。

step4:针对每个类别中的样本点,计算这些样本点的中心点,当做该类的新的中心点,继续step2。

3 上述步骤的关键两点是:

  1. 找到距离自己最近的中心点。
  2. 更新中心点。

二、源代码

%------------------hand shape analysis
%
close all
format long     %显示小数点后4位的数据
%读入hand的landmark数值
 
fid=fopen('shapes.txt');
hand=fscanf(fid, '%g %g',[40,inf]); %  X(1,1)X(2,1)...X(56,1);X(1,2)X(2,2)...X(56,2)
% choose 40 shapes as a row column
Shape=600*hand;
 
%-----------------------------------------------------
%   shape 矩阵每行112列,对应一个手的数据,
%   前56列对应X坐标 后56列对应Y坐标 
%   Odata中所有形状的质点已经平移到原点
temp=Shape;
[temp,X,Y]=show2D(temp);             
% %--------Show unaligned shape  
% plot(X,Y,'r*');
% title('unaligned hands');
%------------------Compute the shape metric--------------------------- 
 
%-------------------------计算each Shape Size-------------------------
T=temp*temp';                             % Diag的对角元素为∑(x^2+y^2)
V=diag(T);                                % compute 对角线
size=sqrt(V);                             % Size 为40×1矩阵
 
%------------------------将Size归一化--------------------------------
%%%         根据形状大小的函数满足S(ax)=aS(x),每个坐标都除以对应Size的值
for i=1:40
  preHand(i,:)=temp(i,:)/size(i);               % preHand 为已经对准质点和大小
end
 
 
% -------------------------将各个形状以hand1为mean旋转------------------------ 
x1=preHand(1,:);      % vector 1*40
 
x1=reshape(x1,56,2);
x2=preHand(2,:);
 
for i=2:40
    x3=preHand(i,:);
    x2=reshape(x3,56,2);
    XD=x1'*x2; 
    [U,S,V]=svd(XD);
    I=x2*V*U';
    preHand(i,:)=reshape(I,1,112);
end
 
aligned=preHand;
for i=1:40
for j=1:56
     XX(i,j)=aligned(i,j);            % the mean x-axis coordinate of every landmark  
     YY(i,j)=aligned(i,j+56);         % the mean y-axis coordinate of every landmark
end   
end
plot(XX,YY,'ro')
%-----------------compute the mean shape coordinates
%   every column of colm is the mean cooridnate of all the 40 hands'
%   coordinate respectively
colm=mean(aligned);              % mean(X) 求每一列元素的均值
for i=1:56
     XX(i)=colm(i);            % the mean x-axis coordinate of every landmark  
     YY(i)=colm(i+56);         % the mean y-axis coordinate of every landmark
end  
 
% subplot(1,2,1);
% figure;
% plot(XX,YY,'g-',XX,YY,'rx');               % show the mean shape of 40 hands
% title('the Mean Shape of Aligned');
% title('b1=0');
%---------------------------------------------------------------
%   tangent space projection
absx=colm*colm';absx=absx*absx;
for i=1:40
    xo=dot(colm,aligned(i,:));          % 矩阵点乘
    xt(i,:)=absx*aligned(i,:)/xo;
end    
 
%---------------------------------------------------------------
%    PCA 
[signals,PC,V] = pca1(xt');
 
% eAB=xt*xt';       % 应该减去均值球协方差矩阵
% eAb=xt*xt'/39;
% % eBA=xt'*xt;
% [PC,V]=eig(eAB);
% [PC1,V1]=eig(eAb);
% V=diag(V);
% V1=diag(V1);
% sumV=40*mean(V);
%   compute the eigenvector of eBA
% PC1=xt'*PC;
% figure(2)
% bar(V);
% title('Shape eigenvalue');
% xlabel('Eigenvalue');
% ylabel('variance expansion factor(percent)');
%   now the shape model can be x=xmean+PC1*B, 
%   where b {-3*sqrt(λ),3*sqrt(λ)}
% Pb=PC(:,1)*3*sqrt(V1(1));
Pb1=signals(:,1)*3*sqrt(V(1));
% 
% Xz=colm+Pb1';
% Xz=colm-Pb1';
Pb2=signals(:,2)*3*sqrt(V(2));
 Xz=colm-Pb2';
% Xz=colm-Pb2';
 
% for i=1:56
%      Xp(i)=Xz(i);            % the mean x-axis coordinate of every landmark  
%      Yp(i)=Xz(i+56);         % the mean y-axis coordinate of every landmark
% end   
 
function edgedemo(action, varargin)
%EDGEDEMO Edge detection demo.
%   This demo uses the EDGE function to apply different edge detection
%   methods to a variety of images.  Use the pop-up menus to select an
%   image and an edge detection method.  You can control the parameters
%   for the different methods by setting the values in the middle frame
%   at the bottom of the figure.  (The set of parameters differs
%   depending on the method you choose.)  Press the "Apply" button to
%   calculate the edge map using the specified method and parameters.
%
%   For the Sobel, Prewitt, and Roberts methods, the EDGE function
%   finds edges by thresholding the gradient.  For the Laplacian of
%   Gaussian method, EDGE thresholds the slope of the zero crossings
%   after filtering the image with a LoG filter.  For the Canny method,
%   EDGE thresholds the gradient using the derivative of a Gaussian
%   filter.
%
%   By default, the EDGE function automatically computes the threshold
%   to use.  To specify a different threshold manually (in order to
%   detect more or fewer edges), click the radio button next to the
%   edit box in the middle frame and enter the value in the text field.
%   If you are using the Canny method, two thresholds are used:  the
%   high threshold is the value you specify, and the low threshold is
%   0.4 times the high threshold.
%
%   For the Sobel and Prewitt methods, you can choose to detect
%   horizontal edges, vertical edges, or both.
%
%   For the Laplacian of Gaussian and Canny methods, you can specify
%   sigma, the parameter that controls the spread of the Gaussian
%   function.  The size of the filter is set automatically by EDGE,
%   based on the value of sigma.
%
%   The Saturn and Lifting Body images are courtesy of NASA.
%  
%   See also EDGE.
 
%   Copyright 1993-2004 The MathWorks, Inc.  
%   $Revision: 1.19.4.7 $  $Date: 2004/04/01 16:12:06 $
 
% Function subroutines:
% 
% InitializeEDGEDEMO -      Initialization of controls, axes, and
%                           Images.
%
% ComputeEdgeMap -          Computes the Edge map of the original 
%                           image using edge.m
%
% SelectMethod -            Selects Edge Detection method and enable/disable
%                           the appropriate controls
%
% LoadNewImage -            Loads the selected Image
%
% UpdateThreshCtrl -     Grabs the threshold from the Edit box and 
%                           enables the Apply button
% 
% UpdateDirectionality -    Sets the directionality string based on the 
%                           popup menu.
%
% Radio -                   Sets values for Radio Buttons and enables/disables
%                           the threshold edit box.
%
% UpdateLOGSize -           Grabs the LOG filter size from edit box
%
% UpdateLOGSigma -          Grabs LOG filter Sigma from edit box
% 
% ActivateSPRControls -     Turns on controls for Sobel, Prewitt, Roberts
%
% ActivateLOGControls -     Turns on controls for LOG.
 
if nargin<1,
   action='InitializeEDGEDEMO';
end;
 
feval(action,varargin{:});
return;
 
 
%%%
%%%  Sub-function - InitializeEDGEDEMO
%%%
 
function InitializeEDGEDEMO()
 
% If dctdemo is already running, bring it to the foreground.
h = findobj(allchild(0), 'tag', 'Edge Detection Demo');
if ~isempty(h)
   figure(h(1))
   return
end
 
screenD = get(0, 'ScreenDepth');
if screenD>8
   grayres=256;
else
   grayres=128;
end
 
 
EdgeDemoFig = figure( ...
   'Name','Edge Detection Demo', ...
   'NumberTitle','off', 'HandleVisibility', 'on', ...
   'tag', 'Edge Detection Demo', ...
   'Visible','off', 'Resize', 'off',...
   'BusyAction','Queue','Interruptible','off', ...
   'Color', [.8 .8 .8], ...
   'IntegerHandle', 'off', ...
   'DoubleBuffer', 'on', ...
   'Colormap', gray(grayres));
 
figpos = get(EdgeDemoFig, 'position');
 
% Adjust the size of the figure window
figpos(3:4) = [560 420];
horizDecorations = 10;  % resize controls, etc.
vertDecorations = 45;   % title bar, etc.
screenSize = get(0,'ScreenSize');
if (screenSize(3) <= 1)
    % No display connected (apparently)
    screenSize(3:4) = [100000 100000]; % don't use Inf because of vms
end
if (((figpos(3) + horizDecorations) > screenSize(3)) | ...
            ((figpos(4) + vertDecorations) > screenSize(4)))
    % Screen size is too small for this demo!
    delete(EdgeDemoFig);
    error(['Screen resolution is too low ', ...
          '(or text fonts are too big) to run this demo']);
end
dx = screenSize(3) - figpos(1) - figpos(3) - horizDecorations;
dy = screenSize(4) - figpos(2) - figpos(4) - vertDecorations;
if (dx < 0)
    figpos(1) = max(5,figpos(1) + dx);
end
if (dy < 0)
    figpos(2) = max(5,figpos(2) + dy);
end
set(EdgeDemoFig, 'position', figpos);
 
rows = figpos(4); cols = figpos(3);
hs = (cols-512) / 3;        % Horizantal Spacing
bot = rows-2*hs-256;        % Bottom of the images
 
%====================================
% Parameters for all buttons and menus
ifs = hs/2;   % Intraframe Spacing
 
Std.Interruptible = 'off';
Std.BusyAction = 'queue';    
 
%================================
% Original Image Axes
hdl.ImageAxes = axes(Std, ...
   'Units', 'Pixels', ...
   'Parent',EdgeDemoFig,...
   'ydir', 'reverse', ...
   'XLim', [.5 256.5], ...
   'YLim', [.5 256.5],...
   'CLim', [0 255], ...
   'Position',[hs bot 256 256], ...
   'XTick',[],'YTick',[]);
set(get(hdl.ImageAxes, 'title'), 'string', 'Original Image');
 
%================================
% Edge Map Axes
hdl.EdgeAxes = axes(Std, ...
   'Units', 'Pixels', ...
   'Parent',EdgeDemoFig,...
   'ydir', 'reverse', ...
   'XLim', [.5 256.5], ...
   'YLim', [.5 256.5],...
   'CLim', [0 1], ...
   'Position',[cols-hs-256 bot 256 256], ...
   'XTick',[],'YTick',[]);
set(get(hdl.EdgeAxes, 'title'), 'string', 'Edge Map');
 
%================================
% Original Image 
hdl.Image = image(Std, ...
   'CData', [], ...
   'CDataMapping', 'scaled', ...
   'Parent',hdl.ImageAxes,...
   'Xdata', [1 256],...
   'Ydata', [1 256],...
   'EraseMode', 'none');
 
%================================
% Edge Map Image
hdl.Edge = image(Std, ...
   'CData', [], ...
   'CDataMapping', 'scaled', ...
   'Parent',hdl.EdgeAxes,...
   'Xdata', [1 256],...
   'Ydata', [1 256],...
   'EraseMode', 'none');
 
% Background color for frames
bgcolor = [0.45 0.45 0.45];
fgcolor = [1 1 1];  % For text
 
%================================
% The Menu frame - image and method popups go here
mfleft=hs; 
mfbot=hs; 
mfwid=(3*cols/8)-1.5*hs; % 2*cols/7
mfht=bot-2*hs;
hdl.MenuFrame = uicontrol(Std, ...
   'Parent', EdgeDemoFig, ...
   'Style', 'frame', ...
   'Units', 'pixels', ...
   'Position', [mfleft mfbot mfwid mfht], ...
   'BackgroundColor', bgcolor);
 
%====================================
% The LoadNewImage menu : ip-> Image Popup
ipwid = mfwid-2*ifs;
ipht = 21;       % (mfht-5*ifs)/3;
ipleft = mfleft+ifs;
ipbot = mfbot+1.7*ifs + 2*ipht;
hdl.ImgPop=uicontrol(Std, ...
   'Parent', EdgeDemoFig, ...
   'Style','popupmenu', ...
   'Units','pixels', ...
   'Position',[ipleft ipbot ipwid ipht], ...
   'Enable','on', ...
   'String','Coins|Circuit|Vertigo|Lifting Body|Rice|Saturn|Eight Bit|Glass', ...
   'Tag','ImagesPop',...
   'Callback','edgedemo(''LoadNewImage'')');
 
% Text label for Image Menu Popup
uicontrol( Std, ...
   'Parent', EdgeDemoFig, ...
   'Style','text', ...
   'Units','pixels', ...
   'Position',[ipleft ipbot+ipht ipwid 18], ...
   'Horiz','left', ...
   'Background',bgcolor, ...
   'Foreground',fgcolor, ...
   'String','Select an Image:');
 
 
%====================================
% The Method menu : mp-> Method Popup
hdl.Method = 'Sobel';
mpwid = ipwid;
mpht = ipht;
mpleft = ipleft;
mpbot = mfbot+1.2*ifs;
hdl.MethodPop=uicontrol(Std, ...
   'Parent', EdgeDemoFig, ...
   'Style','popupmenu', ...
   'Units','pixels', ...
   'Position',[mpleft mpbot mpwid mpht], ...
   'Enable','on', ...
   'String','Sobel|Prewitt|Roberts|Laplacian of Gaussian|Canny', ...
   'Tag','MethodPop',...
   'Callback','edgedemo(''SelectMethod'')');
 
% Text label for Method Popup
uicontrol( Std, ...
   'Parent', EdgeDemoFig, ...
   'Style','text', ...
   'Units','pixels', ...
   'Position',[mpleft mpbot+mpht mpwid 18], ...
   'Horiz','left', ...
   'Background',bgcolor, ...
   'Foreground',fgcolor, ...
   'String','Edge Detection Method:');
 
 
%================================
% The Parameter frame - method specific parameters go here
pfleft =(3*cols/8)+0.5*hs; % 2*cols/7
pfbot = 1.5*hs; 
pfwid =(3*cols/8)-hs; % 3*cols/7
pfht = bot-2.5*hs;
hdl.ParamFrame = uicontrol(Std, ...
   'Parent', EdgeDemoFig, ...
   'Style', 'frame', ...
   'Units', 'pixels', ...
   'Position', [ pfleft pfbot pfwid pfht ], ...
   'BackgroundColor', bgcolor);
 
%====================================
% Controls for Sobel/Prewitt/Roberts edge detectors:
 
% Text label for Threshold Controls
labelleft = pfleft+ifs;
labelwid = pfwid/2-hs;
labelbot = pfbot+2*pfht/3;
hdl.sprThLbl = uicontrol(Std,...
   'Parent', EdgeDemoFig, ...
   'Style','text', ...
   'Units','pixels', ...
   'Position',[labelleft labelbot labelwid 18], ...
   'Horiz','left', ...
   'String','Threshold:', ...
   'BackgroundColor',bgcolor, ...
   'ForegroundColor',fgcolor);
hdl.Threshold = 0;             % Initial value
 
raleft = pfleft + pfwid/2 - hs/2;
rabot = pfbot+2*pfht/3+hs/6;
rawid = pfwid/2;
raht = ipht;
hdl.RadioAutomatic=uicontrol(Std, ...
   'Parent', EdgeDemoFig, ...
   'Style','radiobutton', ...
   'Units','pixels', ...
   'Position',[raleft rabot rawid raht], ...
   'String','Automatic', ...
   'value',1,'Userdata',1, ...
   'Callback','edgedemo(''Radio'',''auto'')');
 
rmleft = pfleft + pfwid/2 - hs/2;
rmbot = pfbot+pfht/3+hs/3;
rmwid = hs*1.5;
rmht = ipht;
hdl.RadioManual=uicontrol(Std, ...
   'Parent', EdgeDemoFig, ...
   'Style','radiobutton', ...
   'Units','pixels', ...
   'Position',[rmleft rmbot rmwid rmht], ...
   'String','', ...
   'value',0,'Userdata',0, ...
   'Callback','edgedemo(''Radio'',''manual'')');
 
thleft = rmleft+rmwid;
thwid = rawid-rmwid;
thbot = rmbot;
thht = rmht;
hdl.ThreshCtrl = uicontrol(Std, ...
   'Parent', EdgeDemoFig, ...
   'Enable', 'off', ...
   'Style','edit', ...
   'Units','pixels', ...
   'Position',[thleft thbot thwid thht], ...
   'Horiz','right', ...
   'Background','white', ...
   'Foreground','black', ...
   'String','0',...
   'callback','edgedemo(''UpdateSprThresh'')');
 
 
 
% The Directionality Popup menu : dp-> Direction Popup
dpwid = pfwid/2;
dpht = ipht;
dpleft = pfleft + pfwid/2 - hs/2;
dpbot = pfbot+.4*hs;
hdl.sprDirPop=uicontrol(Std, ...
   'Parent', EdgeDemoFig, ...
   'Style','popupmenu', ...
   'Units','pixels', ...
   'Position',[dpleft dpbot dpwid dpht], ...
   'Enable','on', ...
   'String','Both|Horizontal|Vertical', ...
   'Tag','DirectionPop',...
   'Callback','edgedemo(''UpdateDirectionality'')');
% Text label for Directionality Popup
labelleft = pfleft+ifs;
labelwid = pfwid/2-hs;     %5*hs/4
labelbot = dpbot;
hdl.sprDirLbl = uicontrol( Std, ...
   'Parent', EdgeDemoFig, ...
   'Style','text', ...
   'Units','pixels', ...
   'Position',[labelleft labelbot labelwid 18], ...
   'Horiz','left', ...
   'Background',bgcolor, ...
   'Foreground',fgcolor, ...
   'String','Direction:');
hdl.Directionality = 'both';
 
 
hdl.logSigmaCtrl=uicontrol(Std, ...
   'Parent', EdgeDemoFig, ...
   'Style','edit', ...
   'Units','pixels', ...
   'Position',[dpleft dpbot dpwid dpht], ...
   'Horiz','right', ...
   'Background','white', ...
   'Foreground','black', ...
   'String','2', ...
   'Tag','DirectionPop',...
   'Visible', 'off', ...
   'Callback','edgedemo(''UpdateLOGSigma'')');
% Text label for Sigma edit box
hdl.logSigmaLbl = uicontrol( Std, ...
   'Parent', EdgeDemoFig, ...
   'Style','text', ...
   'Units','pixels', ...
   'Position',[labelleft labelbot labelwid 18], ...
   'Horiz','left', ...
   'Background',bgcolor, ...
   'Foreground',fgcolor, ...
   'Visible', 'off', ...
   'String','Sigma:');
hdl.LogSigma = 2;
 
%====================================
% Status bar
colr = get(EdgeDemoFig,'Color');
hdl.Status = uicontrol( Std, ...
   'Parent', EdgeDemoFig, ...
   'Style','text', ...
   'Units','pixels', ...
   'Background', colr, ...
   'Foreground', [.8 0 0], ...
   'Position',[pfleft 2 pfwid 18], ...
   'Horiz','center', ...
   'Tag', 'Status', ...
   'String','Initializing Edge Detection Demo...');
 
%================================
% The Button frame - Apply, Info, and Close buttons go here
bfleft = (3*cols/4)+.5*hs; % 5*cols/7
bfbot = hs; 
bfwid = (cols/4)-1.5*hs; % 2*cols/7
bfht = bot-2*hs;
hdl.ButtonFrame = uicontrol(Std, ...
   'Parent', EdgeDemoFig, ...
   'Style', 'frame', ...
   'Units', 'pixels', ...
   'Position', [ bfleft bfbot bfwid bfht ], ...
   'BackgroundColor', bgcolor);
 
 
%====================================
% The APPLY button
btnwid = bfwid - 2*ifs;
btnht =  (bfht-4*ifs)/3;     % 21
btnleft = bfleft + ifs;
btnbot = bfbot + bfht - ifs - btnht;
hdl.Apply=uicontrol(Std, ...
   'Parent', EdgeDemoFig, ...
   'Style','pushbutton', ...
   'Units','pixels', ...
   'Position',[btnleft btnbot btnwid btnht], ...
   'Enable','off', ...
   'String','Apply', ...
   'Callback','edgedemo(''ComputeEdgeMap'')');
 
%====================================
% The INFO button
btnbot = bfbot + bfht - 2*ifs - 2*btnht;
hdl.Help=uicontrol(Std, ...
   'Parent', EdgeDemoFig, ...
   'Style','pushbutton', ...
   'Units','pixels', ...
   'Position',[btnleft btnbot btnwid btnht], ...
   'Enable','off', ...
   'String','Info', ...
   'Callback','helpwin edgedemo');
 
%====================================
% The CLOSE button
btnbot = bfbot + ifs;
hdl.Close=uicontrol(Std, ...
   'Parent', EdgeDemoFig, ...
   'Style','pushbutton', ...
   'Units','pixels', ...
   'Position',[btnleft btnbot btnwid btnht], ...
   'Enable','off', ...
   'String','Close', ...
   'Callback','close(gcbf)');
 
 
set(EdgeDemoFig, 'Userdata', hdl, 'Visible', 'on');
drawnow
LoadNewImage(EdgeDemoFig);
drawnow
set(EdgeDemoFig, 'HandleVisibility', 'Callback');
set([hdl.Apply hdl.Help hdl.Close] , 'Enable', 'on');
return
 
 
%%%
%%%  Sub-Function - ComputeEdgeMap
%%%
 
function ComputeEdgeMap(DemoFig)
 
if nargin<1
   callb = 1;    % We're in a callback
   DemoFig = gcbf;
else 
   callb = 0;    % We're in the initialization
end
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114.
  • 115.
  • 116.
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.
  • 124.
  • 125.
  • 126.
  • 127.
  • 128.
  • 129.
  • 130.
  • 131.
  • 132.
  • 133.
  • 134.
  • 135.
  • 136.
  • 137.
  • 138.
  • 139.
  • 140.
  • 141.
  • 142.
  • 143.
  • 144.
  • 145.
  • 146.
  • 147.
  • 148.
  • 149.
  • 150.
  • 151.
  • 152.
  • 153.
  • 154.
  • 155.
  • 156.
  • 157.
  • 158.
  • 159.
  • 160.
  • 161.
  • 162.
  • 163.
  • 164.
  • 165.
  • 166.
  • 167.
  • 168.
  • 169.
  • 170.
  • 171.
  • 172.
  • 173.
  • 174.
  • 175.
  • 176.
  • 177.
  • 178.
  • 179.
  • 180.
  • 181.
  • 182.
  • 183.
  • 184.
  • 185.
  • 186.
  • 187.
  • 188.
  • 189.
  • 190.
  • 191.
  • 192.
  • 193.
  • 194.
  • 195.
  • 196.
  • 197.
  • 198.
  • 199.
  • 200.
  • 201.
  • 202.
  • 203.
  • 204.
  • 205.
  • 206.
  • 207.
  • 208.
  • 209.
  • 210.
  • 211.
  • 212.
  • 213.
  • 214.
  • 215.
  • 216.
  • 217.
  • 218.
  • 219.
  • 220.
  • 221.
  • 222.
  • 223.
  • 224.
  • 225.
  • 226.
  • 227.
  • 228.
  • 229.
  • 230.
  • 231.
  • 232.
  • 233.
  • 234.
  • 235.
  • 236.
  • 237.
  • 238.
  • 239.
  • 240.
  • 241.
  • 242.
  • 243.
  • 244.
  • 245.
  • 246.
  • 247.
  • 248.
  • 249.
  • 250.
  • 251.
  • 252.
  • 253.
  • 254.
  • 255.
  • 256.
  • 257.
  • 258.
  • 259.
  • 260.
  • 261.
  • 262.
  • 263.
  • 264.
  • 265.
  • 266.
  • 267.
  • 268.
  • 269.
  • 270.
  • 271.
  • 272.
  • 273.
  • 274.
  • 275.
  • 276.
  • 277.
  • 278.
  • 279.
  • 280.
  • 281.
  • 282.
  • 283.
  • 284.
  • 285.
  • 286.
  • 287.
  • 288.
  • 289.
  • 290.
  • 291.
  • 292.
  • 293.
  • 294.
  • 295.
  • 296.
  • 297.
  • 298.
  • 299.
  • 300.
  • 301.
  • 302.
  • 303.
  • 304.
  • 305.
  • 306.
  • 307.
  • 308.
  • 309.
  • 310.
  • 311.
  • 312.
  • 313.
  • 314.
  • 315.
  • 316.
  • 317.
  • 318.
  • 319.
  • 320.
  • 321.
  • 322.
  • 323.
  • 324.
  • 325.
  • 326.
  • 327.
  • 328.
  • 329.
  • 330.
  • 331.
  • 332.
  • 333.
  • 334.
  • 335.
  • 336.
  • 337.
  • 338.
  • 339.
  • 340.
  • 341.
  • 342.
  • 343.
  • 344.
  • 345.
  • 346.
  • 347.
  • 348.
  • 349.
  • 350.
  • 351.
  • 352.
  • 353.
  • 354.
  • 355.
  • 356.
  • 357.
  • 358.
  • 359.
  • 360.
  • 361.
  • 362.
  • 363.
  • 364.
  • 365.
  • 366.
  • 367.
  • 368.
  • 369.
  • 370.
  • 371.
  • 372.
  • 373.
  • 374.
  • 375.
  • 376.
  • 377.
  • 378.
  • 379.
  • 380.
  • 381.
  • 382.
  • 383.
  • 384.
  • 385.
  • 386.
  • 387.
  • 388.
  • 389.
  • 390.
  • 391.
  • 392.
  • 393.
  • 394.
  • 395.
  • 396.
  • 397.
  • 398.
  • 399.
  • 400.
  • 401.
  • 402.
  • 403.
  • 404.
  • 405.
  • 406.
  • 407.
  • 408.
  • 409.
  • 410.
  • 411.
  • 412.
  • 413.
  • 414.
  • 415.
  • 416.
  • 417.
  • 418.
  • 419.
  • 420.
  • 421.
  • 422.
  • 423.
  • 424.
  • 425.
  • 426.
  • 427.
  • 428.
  • 429.
  • 430.
  • 431.
  • 432.
  • 433.
  • 434.
  • 435.
  • 436.
  • 437.
  • 438.
  • 439.
  • 440.
  • 441.
  • 442.
  • 443.
  • 444.
  • 445.
  • 446.
  • 447.
  • 448.
  • 449.
  • 450.
  • 451.
  • 452.
  • 453.
  • 454.
  • 455.
  • 456.
  • 457.
  • 458.
  • 459.
  • 460.
  • 461.
  • 462.
  • 463.
  • 464.
  • 465.
  • 466.
  • 467.
  • 468.
  • 469.
  • 470.
  • 471.
  • 472.
  • 473.
  • 474.
  • 475.
  • 476.
  • 477.
  • 478.
  • 479.
  • 480.
  • 481.
  • 482.
  • 483.
  • 484.
  • 485.
  • 486.
  • 487.
  • 488.
  • 489.
  • 490.
  • 491.
  • 492.
  • 493.
  • 494.
  • 495.
  • 496.
  • 497.
  • 498.
  • 499.
  • 500.
  • 501.
  • 502.
  • 503.
  • 504.
  • 505.
  • 506.
  • 507.
  • 508.
  • 509.
  • 510.
  • 511.
  • 512.
  • 513.
  • 514.
  • 515.
  • 516.
  • 517.
  • 518.
  • 519.
  • 520.
  • 521.
  • 522.
  • 523.
  • 524.
  • 525.
  • 526.
  • 527.
  • 528.
  • 529.
  • 530.
  • 531.
  • 532.
  • 533.
  • 534.
  • 535.
  • 536.
  • 537.
  • 538.
  • 539.
  • 540.
  • 541.
  • 542.
  • 543.
  • 544.
  • 545.
  • 546.
  • 547.
  • 548.
  • 549.
  • 550.
  • 551.
  • 552.
  • 553.
  • 554.
  • 555.
  • 556.
  • 557.
  • 558.
  • 559.
  • 560.
  • 561.
  • 562.
  • 563.
  • 564.
  • 565.
  • 566.
  • 567.
  • 568.
  • 569.
  • 570.
  • 571.
  • 572.
  • 573.
  • 574.
  • 575.
  • 576.
  • 577.
  • 578.
  • 579.
  • 580.
  • 581.
  • 582.
  • 583.
  • 584.
  • 585.
  • 586.
  • 587.
  • 588.
  • 589.
  • 590.
  • 591.
  • 592.
  • 593.
  • 594.
  • 595.
  • 596.
  • 597.
  • 598.
  • 599.
  • 600.
  • 601.
  • 602.
  • 603.

三、运行结果

【图像识别】基于k-means聚类的手势识别matlab 源码_matlab_02【图像识别】基于k-means聚类的手势识别matlab 源码_matlab_02【图像识别】基于k-means聚类的手势识别matlab 源码_图像处理_04【图像识别】基于k-means聚类的手势识别matlab 源码_图像处理_05