K-means聚类 —— matlab

本文详细介绍了K均值聚类算法的原理,通过实例演示如何使用MATLAB自带的kmeans函数,并对比了原理推导和函数应用的结果,探讨了聚类效果和SC轮廓系数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.简介

2.算法原理

3.实例分析

3.1 读取数据

3.2 原理推导K均值过程

3.3 自带kmeans函数求解过程

完整代码


1.简介

        聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程,聚类就是一种发现这种内在结构的技术,聚类技术经常被称为无监督学习。

        K均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目K,K由用户指定,K均值算法根据某个距离函数反复把数据分入K个聚类中。

2.算法原理

        K-means算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。

K-mean算法步骤如下:

(1)随机选取K个样本为中⼼

(2)分别计算所有样本到随机选取的K个中⼼的距离

(3)样本离哪个中⼼近就被分到哪个中⼼

(4)计算各个中⼼样本的均值(最简单的⽅法就是求样本每个维度的平均值)作为新的中心

(5)重复(2)(3)(4)直到新的中⼼和原来的中⼼基本不变化的时候,算法结束

3.实例分析

数据来源于:统计年鉴

从数据中,我们可以看到,实际数据是被分为三类的。

3.1 读取数据

data=xlsread('D:\桌面\kmeans.xlsx')

返回:

在这里我们看到,xlsread读取数据时没有读取变量名,但序号也被加进去了,接下来我们需要将其剔除

data=data(:,2:7)

返回:

function [idx, C, sumD, D] = kmeans(X, k, varargin) % varargin:实际输入参量 if nargin 1 % 大于1刚至少有一种距离 error(sprintf('Ambiguous ''distance'' parameter value: %s.', distance)); elseif isempty(i) % 如果是空的,则表明没有合适的距离 error(sprintf('Unknown ''distance'' parameter value: %s.', distance)); end % 针对不同的距离,处理不同 distance = distNames{i}; switch distance case 'cityblock' % sort 列元素按升序排列,Xord中存的是元素在原始矩阵中的列中对应的大小位置 [Xsort,Xord] = sort(X,1); case 'cosine' % 余弦 % 计算每一行的和的平方根 Xnorm = sqrt(sum(X.^2, 2)); if any(min(Xnorm) <= eps * max(Xnorm)) error(['Some points have small relative magnitudes, making them ', ... 'effectively zero.\nEither remove those points, or choose a ', ... 'distance other than ''cosine''.'], []); end % 标量化 Xnorm(:,ones(1,p))得到n*p的矩阵 X = X ./ Xnorm(:,ones(1,p)); case 'correlation' % 线性化 X = X - repmat(mean(X,2),1,p); % 计算每一行的和的平方根 Xnorm = sqrt(sum(X.^2, 2)); if any(min(Xnorm) 1 error(sprintf('Ambiguous ''start'' parameter value: %s.', start)); elseif isempty(i) error(sprintf('Unknown ''start'' parameter value: %s.', start)); elseif isempty(k) error('You must specify the number of clusters, K.'); end start = startNames{i}; % strcmp比较两个字符串 uniform是在X中随机选择K个点 if strcmp(start, 'uniform') if strcmp(distance, 'hamming') error('Hamming distance cannot be initialized with uniform random values.'); end % 标量化后的X Xmins = min(X,1); Xmaxs = max(X,1); end elseif isnumeric(start) % 判断输入是否是一个数 这里的start是一个K*P的矩阵,表示初始聚类中心 CC = start; % CC表示初始聚类中心 start = 'numeric'; if isempty(k) k = size(CC,1); elseif k ~= size(CC,1); error('The ''start'' matrix must have K rows.'); elseif size(CC,2) ~= p error('The ''start'' matrix must have the same number of columns as X.'); end if isempty(reps) reps = size(CC,3); elseif reps ~= size(CC,3); error('The third dimension of the ''start'' array must match the ''replicates'' parameter value.'); end % Need to center explicit starting points for 'correlation'. % 线性距离需要指定具体的开始点 % (Re)normalization for 'cosine'/'correlation' is done at each % iteration.每一次迭代进行“余弦和线性”距离正规化 % 判断是否相等 if isequal(distance, 'correlation') % repmat复制矩阵1*P*1 线性化 CC = CC - repmat(mean(CC,2),[1,p,1]); end else error('The ''start'' parameter value must be a string or a numeric matrix or array.'); end % ------------------------------------------------------------------ % 如果一个聚类丢失了所有成员,这个进程将被调用 if ischar(emptyact) emptyactNames = {'error','drop','singleton'}; i = strmatch(lower(emptyact), emptyactNames); if length(i) > 1 error(sprintf('Ambiguous ''emptyaction'' parameter value: %s.', emptyact)); elseif isempty(i) error(sprintf('Unknown ''emptyaction'' parameter value: %s.', emptyact)); end emptyact = emptyactNames{i}; else error('The ''emptyaction'' parameter value must be a string.'); end % ------------------------------------------------------------------ % 控制输出的显示示信息 if ischar(display) % strvcat 垂直连接字符串 i = strmatch(lower(display), strvcat('off','notify','final','iter')); if length(i) > 1 error(sprintf('Ambiguous ''display'' parameter value: %s.', display)); elseif isempty(i) error(sprintf('Unknown ''display'' parameter value: %s.', display)); end display = i-1; else error('The ''display'' parameter value must be a string.'); end % ------------------------------------------------------------------ % 输入参数K的控制 if k == 1 error('The number of clusters must be greater than 1.'); elseif n 2 % 'iter',\t 表示向后空出8个字符 disp(sprintf(' iter\t phase\t num\t sum')); end % ------------------------------------------------------------------ % Begin phase one: batch reassignments 第一队段:分批赋值 converged = false; iter = 0; while true % Compute the distance from every point to each cluster centroid % 计算每一个点到每一个聚类中心的距离,D中存放的是N*K个数值 D(:,changed) = distfun(X, C(changed,:), distance, iter); % Compute the total sum of distances for the current configuration. % Can't do it first time through, there's no configuration yet. % 计算当前配置的总距离,但第一次不能执行,因为还没有配置 if iter > 0 totsumD = sum(D((idx-1)*n + (1:n)')); % Test for a cycle: if objective is not decreased, back out % the last step and move on to the single update phase % 循环测试:如果目标没有减少,退出到最后一步,移动到第二阶段 % prevtotsumD表示前一次的总距离,如果前一次的距离比当前的小,则聚类为上一次的,即不发生变化 if prevtotsumD 2 % 'iter' disp(sprintf(dispfmt,iter,1,length(moved),totsumD)); end if iter >= maxit, % break(2) break; % 跳出while end end % Determine closest cluster for each point and reassign points to clusters % 决定每一个点的最近分簇,重新分配点到各个簇 previdx = idx; % 大小为n*1 % totsumD 被初始化为无穷大,这里表示总距离 prevtotsumD = totsumD; % 返回每一行中最小的元素,d的大小为n*1,nidx为最小元素在行中的位置,其大小为n*1,D为n*p [d, nidx] = min(D, [], 2); if iter == 0 % iter==0,表示第一次迭代 % Every point moved, every cluster will need an update % 每一个点需要移动,每一个簇更新 moved = 1:n; idx = nidx; changed = 1:k; else % Determine which points moved 决定哪一个点移动 % 找到上一次和当前最小元素不同的位置 moved = find(nidx ~= previdx); if length(moved) > 0 % Resolve ties in favor of not moving % 重新分配而不是移动 括号中是一个逻辑运算 确定需要移动点的位置 moved = moved(D((previdx(moved)-1)*n + moved) > d(moved)); end % 如果没有不同的,即当前的是最小元素,跳出循环,得到的元素已经是各行的最小值 if length(moved) == 0 % break(3) break; end idx(moved) = nidx(moved); % Find clusters that gained or lost members 找到获得的或者丢失的成员的分簇 % 得到idx(moved)和previdx(moved)中不重复出现的所有元素,并按升序排列 changed = unique([idx(moved); previdx(moved)])'; end % Calculate the new cluster centroids and counts. 计算新的分簇中心和计数 % C(changed,:)表示新的聚类中心,m(changed)表示聚类标号在idx中出现的次数 % sort 列元素按升序排列,Xsort存放对的元素,Xord中存的是元素在原始矩阵中的列中对应的大小位置 [C(changed,:), m(changed)] = gcentroids(X, idx, changed, distance, Xsort, Xord); iter = iter + 1; % Deal with clusters that have just lost all their members % 处理丢失所有成员的分簇,empties表示丢失元素的聚类标号 不用考虑 empties = changed(m(changed) == 0); if ~isempty(empties) switch emptyact case 'error' % 默认值,一般情况下不会出现 error(sprintf('Empty cluster created at iteration %d.',iter)); case 'drop' % Remove the empty cluster from any further processing % 移走空的聚类 D(:,empties) = NaN; changed = changed(m(changed) > 0); if display > 0 warning(sprintf('Empty cluster created at iteration %d.',iter)); end case 'singleton' if display > 0 warning(sprintf('Empty cluster created at iteration %d.',iter)); end for i = empties % Find the point furthest away from its current cluster. % Take that point out of its cluster and use it to create % a new singleton cluster to replace the empty one. % 找到离聚类中心最远距离的点,把该点从它的聚类中移走,用它来创建一个新的聚类,来代替空的聚类 % 得到列的最大元素(dlarge),以及该元素在列中的标号(lonely) [dlarge, lonely] = max(d); from = idx(lonely); % taking from this cluster 从当前聚类移走 C(i,:) = X(lonely,:); m(i) = 1; idx(lonely) = i; d(lonely) = 0; % Update clusters from which points are taken % 更新那些点被移走的聚类 [C(from,:), m(from)] = gcentroids(X, idx, from, distance, Xsort, Xord); changed = unique([changed from]); end end end end % phase one % ------------------------------------------------------------------ % Initialize some cluster information prior to phase two % 为第二阶段初始化一些先验聚类信息 针对特定的距离,默认的是欧氏距离 switch distance case 'cityblock' Xmid = zeros([k,p,2]); for i = 1:k if m(i) > 0 % Separate out sorted coords for points in i'th cluster, % and save values above and below median, component-wise % 分解出第i个聚类中挑选的点的坐标,保存它的上,下中位数 % reshape把矩阵分解为要求的行列数m*p % sort 列元素按升序排列,Xord中存的是元素在原始矩阵中的列中对应的大小位置 Xsorted = reshape(Xsort(idx(Xord)==i), m(i), p); % floor取比值小或者等于的最近的值 nn = floor(.5*m(i)); if mod(m(i),2) == 0 Xmid(i,:,1:2) = Xsorted([nn, nn+1],:)'; elseif m(i) > 1 Xmid(i,:,1:2) = Xsorted([nn, nn+2],:)'; else Xmid(i,:,1:2) = Xsorted([1, 1],:)'; end end end case 'hamming' Xsum = zeros(k,p); for i = 1:k if m(i) > 0 % Sum coords for points in i'th cluster, component-wise % 对基于分量对第i个聚类的坐标点求和 Xsum(i,:) = sum(X(idx==i,:), 1); end end end % ------------------------------------------------------------------ % Begin phase two: single reassignments 第二阶段:单独赋值 % m中保存的是每一个聚类的个数,元素和为n % find(m' > 0)得到m'中大于0的元素的位置(索引) % 实际情况(默认情况下)changed=1:k changed = find(m' > 0); lastmoved = 0; nummoved = 0; iter1 = iter; while iter < maxit % Calculate distances to each cluster from each point, and the % potential change in total sum of errors for adding or removing % each point from each cluster. Clusters that have not changed % membership need not be updated. % 计算从每一个点到每一个聚类的距离,潜在由于总距离发生变化移除或添加引起的错误。 % 那些成员没有改变的聚类不需要更新。 % % Singleton clusters are a special case for the sum of dists % calculation. Removing their only point is never best, so the % reassignment criterion had better guarantee that a singleton % point will stay in its own cluster. Happily, we get % Del(i,idx(i)) == 0 automatically for them. % 单独聚类在计算距离时是一个特殊情况,仅仅移除点不是最好的方法,因此重新赋值准则能够保证一个 % 单独的点能够留在它的聚类中,可喜的是,自动有Del(i,idx(i)) == 0。 switch distance case 'sqeuclidean' for i = changed % idx存放的距离矩阵D中每一行的最小元素所处的列,也即位置 mbrs = (idx == i); sgn = 1 - 2*mbrs; % -1 for members, 1 for nonmembers % 表示只有一个聚类 if m(i) == 1 % prevent divide-by-zero for singleton mbrs 防止单个成员做0处理 sgn(mbrs) = 0; end Del(:,i) = (m(i) ./ (m(i) + sgn)) .* sum((X - C(repmat(i,n,1),:)).^2, 2); end case 'cityblock' for i = changed if mod(m(i),2) == 0 % this will never catch singleton clusters ldist = Xmid(repmat(i,n,1),:,1) - X; rdist = X - Xmid(repmat(i,n,1),:,2); mbrs = (idx == i); sgn = repmat(1-2*mbrs, 1, p); % -1 for members, 1 for nonmembers Del(:,i) = sum(max(0, max(sgn.*rdist, sgn.*ldist)), 2); else Del(:,i) = sum(abs(X - C(repmat(i,n,1),:)), 2); end end case {'cosine','correlation'} % The points are normalized, centroids are not, so normalize them normC(changed) = sqrt(sum(C(changed,:).^2, 2)); if any(normC 0 % Resolve ties in favor of not moving % 重新分配而不是移动 确定移动的位置 moved = moved(Del((previdx(moved)-1)*n + moved) > minDel(moved)); end if length(moved) == 0 % Count an iteration if phase 2 did nothing at all, or if we're % in the middle of a pass through all the points if (iter - iter1) == 0 | nummoved > 0 iter = iter + 1; if display > 2 % 'iter' disp(sprintf(dispfmt,iter,2,nummoved,totsumD)); end end converged = true; break; end % Pick the next move in cyclic order moved = mod(min(mod(moved - lastmoved - 1, n) + lastmoved), n) + 1; % If we've gone once through all the points, that's an iteration if moved 2 % 'iter' disp(sprintf(dispfmt,iter,2,nummoved,totsumD)); end if iter >= maxit, break; end nummoved = 0; end nummoved = nummoved + 1; lastmoved = moved; oidx = idx(moved); nidx = nidx(moved); totsumD = totsumD + Del(moved,nidx) - Del(moved,oidx); % Update the cluster index vector, and rhe old and new cluster % counts and centroids idx(moved) = nidx; m(nidx) = m(nidx) + 1; m(oidx) = m(oidx) - 1; switch distance case 'sqeuclidean' C(nidx,:) = C(nidx,:) + (X(moved,:) - C(nidx,:)) / m(nidx); C(oidx,:) = C(oidx,:) - (X(moved,:) - C(oidx,:)) / m(oidx); case 'cityblock' for i = [oidx nidx] % Separate out sorted coords for points in each cluster. % New centroid is the coord median, save values above and % below median. All done component-wise. Xsorted = reshape(Xsort(idx(Xord)==i), m(i), p); nn = floor(.5*m(i)); if mod(m(i),2) == 0 C(i,:) = .5 * (Xsorted(nn,:) + Xsorted(nn+1,:)); Xmid(i,:,1:2) = Xsorted([nn, nn+1],:)'; else C(i,:) = Xsorted(nn+1,:); if m(i) > 1 Xmid(i,:,1:2) = Xsorted([nn, nn+2],:)'; else Xmid(i,:,1:2) = Xsorted([1, 1],:)'; end end end case {'cosine','correlation'} C(nidx,:) = C(nidx,:) + (X(moved,:) - C(nidx,:)) / m(nidx); C(oidx,:) = C(oidx,:) - (X(moved,:) - C(oidx,:)) / m(oidx); case 'hamming' % Update summed coords for points in each cluster. New % centroid is the coord median. All done component-wise. Xsum(nidx,:) = Xsum(nidx,:) + X(moved,:); Xsum(oidx,:) = Xsum(oidx,:) - X(moved,:); C(nidx,:) = .5*sign(2*Xsum(nidx,:) - m(nidx)) + .5; C(oidx,:) = .5*sign(2*Xsum(oidx,:) - m(oidx)) + .5; end changed = sort([oidx nidx]); end % phase two % ------------------------------------------------------------------ if (~converged) & (display > 0) warning(sprintf('Failed to converge in %d iterations.', maxit)); end % Calculate cluster-wise sums of distances nonempties = find(m(:)'>0); D(:,nonempties) = distfun(X, C(nonempties,:), distance, iter); d = D((idx-1)*n + (1:n)'); sumD = zeros(k,1); for i = 1:k sumD(i) = sum(d(idx == i)); end if display > 1 % 'final' or 'iter' disp(sprintf('%d iterations, total sum of distances = %g',iter,totsumD)); end % Save the best solution so far if totsumD 3 Dbest = D; end end end % Return the best solution
### K-means 聚类算法MATLAB 中的实现 K-means 是一种常用的无监督学习方法,用于将数据集划分为若干个簇。该算法通过迭代优化过程最小化各簇内样本之间的距离平方和。 #### 初始化参数 首先定义输入矩阵 `X` 的结构,其中每一行代表一个观测点,每列对应不同的特征维度[^2]。 ```matlab % 设置随机种子以获得可重复结果 rng(1); % 假设我们有如下二维数据集作为例子 dataSet = [randn(100, 2)+ones(100, 2); randn(100, 2)-ones(100, 2)]; ``` #### 定义辅助函数 创建两个帮助函数分别用来分配最近质心以及更新新的质心位置: ```matlab function idx = findClosestCentroids(X, centroids) % 计算每个点到各个质心的距离并返回最短的那个索引 [~, idx] = min(sum(bsxfun(@minus, X, centroids).^2, 2)); end function centroids = computeCentroids(X, idx, K) n = size(X, 2); centroids = zeros(K, n); for i = 1:K centroids(i,:) = mean(X(idx==i,:), 1); end % 处理可能存在空簇的情况 emptyClusters = sum(isnan(centroids), 2) > 0; while any(emptyClusters) newIdx = randsample(numel(X), nnz(emptyClusters)); centroids(emptyClusters, :) = X(newIdx, :); emptyClusters = sum(isnan(centroids), 2) > 0; end end ``` #### 主程序逻辑 编写主脚本来执行完整的 k-means 流程: ```matlab function [finalCentroids, clusterIndices] = runKMeans(X, initialCentroids, maxIterations) m = size(X, 1); n = size(X, 2); K = size(initialCentroids, 1); centroids = initialCentroids; previousCentroids = centroids; for iter = 1:maxIterations fprintf('Iteration number %d/%d...\n', iter, maxIterations); % 分配给最近的质心 clusterIndices = findClosestCentroids(X, centroids); % 更新质心的位置 centroids = computeCentroids(X, clusterIndices, K); % 如果连续两次迭代中质心不再变化,则提前终止 if all(previousCentroids(:)==centroids(:)) break; else previousCentroids = centroids; end end finalCentroids = centroids; end ``` #### 可视化结果 最后利用散点图展示最终分类效果及对应的质心位置[^3]: ```matlab figure; scatter(dataSet(:, 1), dataSet(:, 2), [], clusterIndices, 'filled'); title('K-Means Clustering Results'); xlabel('Feature 1'); ylabel('Feature 2'); legend('Cluster Centers'); hold on; plot(finalCentroids(:, 1), finalCentroids(:, 2), 'kx', 'MarkerSize', 12, 'LineWidth', 3); hold off; ```
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值