灰狼优化算法(Grey Wolf Optimization,GWO)是新型启元优化算法,相比于其他群体智能优化算法,该算法同样存在收敛速度较慢、不稳定、易陷入局部最优等问题。针对上述问题,根据GWO算法的结构特点,提出了一种自适应调整策略的混沌灰狼优化算法(Chaotic Local Search GWO),利用自适应调整策略来提高GWO算法的收敛速度,通过混沌局部搜索策略增加种群的多样性,使搜索过程避免陷入局部最优。最后利用6个测试函数对算法进行仿真验证,并结合其他4种算法进行了横向比较。实验结果证明,所提出的改进算法在收敛速度、精度以及稳定性方面具有明显的优势。
clear all
clc
SearchAgents_no=30; % Number of search agents
Max_iteration=500; % Maximum numbef of iterations
Function_name='F12'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper)
%for func_num=18:23;
% initial_flag=0;
%Function_name=strcat('F',num2str(func_num));
% time=cputime;
% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[Best_score,Best_pos,GWO_cg_curve]=GWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
[Best_score,Best_pos,IGWO_cg_curve]=IGWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
PSO_cg_curve=PSO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); % run PSO to compare to results
[Best_score,Best_pos,CGWO_cg_curve]=CGWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
[Best_score,Best_pos,FGWO_cg_curve]=FGWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
[Best_score,Best_pos,SCA_cg_curve]=SCA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
figure('Position',[500 500 660 290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
%Draw objective space
subplot(1,2,2);
semilogy(GWO_cg_curve,'Color','r')
hold on
semilogy(PSO_cg_curve,'Color','b')
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');
hold on
semilogy(IGWO_cg_curve,'Color','g')
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');
hold on
semilogy(CGWO_cg_curve,'Color','c')
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');
hold on
semilogy(FGWO_cg_curve,'Color','m')
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');
hold on
semilogy(SCA_cg_curve,'Color','k')
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');
CGWO_ave=mean2(CGWO_cg_curve);
CGWO_std=std2(CGWO_cg_curve);
GWO_ave=mean2(GWO_cg_curve);
GWO_std=std2(GWO_cg_curve);
FGWO_ave=mean2(FGWO_cg_curve);
FGWO_std=std2(FGWO_cg_curve);
IGWO_ave=mean2(IGWO_cg_curve);
IGWO_std=std2(IGWO_cg_curve);
PSO_ave=mean2(PSO_cg_curve);
PSO_std=std2(PSO_cg_curve);
SCA_ave=mean2(SCA_cg_curve);
SCA_std=std2(SCA_cg_curve);
axis tight
grid on
box on
legend('GWO','PSO','IGWO','CGWO','FGWO','SCA')
display(['The best solution obtained by CGWO is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective funciton found by CGWO is : ', num2str(Best_score)]);- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.

240

被折叠的 条评论
为什么被折叠?



