针对传统粒子群算法易早熟、精度低、后期收敛速度慢等问题,结合反向学习理论,提出了一种基于交叉因子的双向寻优粒子群优化算法(CBMPSO)。该算法使初始种群在搜索区域均匀分布,计算粒子及其反向粒子的适应值,取最优作为初始种群;迭代过程增加对全局最差粒子的跟踪,随机开启基于交叉因子的双向学习机制。对几种典型函数的测试结果表明,CBMPSO算法的寻优能力及收敛速度有了显著提高,并且能够有效避免早熟收敛问题。

clc;
close all
clear
load('data4.mat')
S=(S_coo(2)-0.5)*num_shange+(S_coo(1)+0.5);%起点对应的编号
E=(E_coo(2)-0.5)*num_shange+(E_coo(1)+0.5);%终点对应的编号

PopSize=20;%种群大小
OldBestFitness=0;%旧的最优适应度值
gen=0;%迭代次数
maxgen =100;%最大迭代次数

c1=0.5;%认知系数
c2=0.7;%社会学习系数
c3=0.2;%反向因子
w=0.96;%惯性系数
%%
%初始化路径
w_min=0.5;
w_max=1;
Group=ones(num_point,PopSize);  %种群初始化
flag=1;
%% 初始化粒子群位置
for i=1:PopSize
    p_lin=randperm(num_point)';%随机生成1*400不重复的行向量
     %% 将起点编号放在首位
        index=find(p_lin==S);
        lin=p_lin(1);
        p_lin(1)=p_lin(index);
        p_lin(index)=lin;
        Group(:,i)=p_lin;
        %%将每个个体进行合理化处理
        [Group(:,i),flag]=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);
         fangxiang_Group(:,i)=fangxiang(Group(:,i),c3);%方向粒子数量
    while flag==1%如处理不成功,则初始化个体,重新处理
        %% 将起点编号放在首位
        index=find(p_lin==S);
        lin=p_lin(1);
        p_lin(1)=p_lin(index);
        p_lin(index)=lin;
        Group(:,i)=p_lin;
        fangxiang_Group(:,i)=p_lin;
        %%将每个个体进行合理化处理
        [Group(:,i),flag]=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);
         [fangxiang_Group(:,i),flag]=deal_fun(fangxiang_Group(:,i),num_point,liantong_point,E,num_shange);
    end
   
end

%初始化粒子速度(即交换序)
Velocity =zeros(num_point,PopSize);
for i=1:PopSize
    Velocity(:,i)=round(rand(1,num_point)'*num_point/10); %round取整
end

%计算每个个体对应路径的距离
for i=1:PopSize
    EachPathDis(i) = PathDistance(Group(:,i)',E,num_shange);
      EachPathDis_fangxiang(i) = PathDistance(fangxiang_Group(:,i)',E,num_shange);
end

IndivdualBest=Group;%记录各粒子的个体极值点位置,即个体找到的最短路径
IndivdualBestFitness=EachPathDis;%记录最佳适应度值,即个体找到的最短路径的长度
if min(EachPathDis)<min(EachPathDis_fangxiang)
[GlobalBestFitness,index]=min(EachPathDis);%找出全局最优值和相应序号
else
   [GlobalBestFitness,index]=min(EachPathDis_fangxiang);%找出全局最优值和相应序号 
end
%寻优
while gen < maxgen
    w=w_max-(w_max-w_min)*gen/maxgen;%自适应权重
    %迭代次数递增
    gen = gen +1
    %更新全局极值点位置,这里指路径
    for i=1:PopSize
        if min(EachPathDis)<min(EachPathDis_fangxiang)

        GlobalBest(:,i) = Group(:,index);
        else
          GlobalBest(:,i) = fangxiang_Group(:,index);
        end
    end
    
    %求pij-xij ,pgj-xij交换序,并以概率c1,c2的保留交换序
    pij_xij=GenerateChangeNums(Group,IndivdualBest);  %根据个体最优解求交换序
    pij_xij=HoldByOdds(pij_xij,c1);%以概率c1保留交换序
    pgj_xij=GenerateChangeNums(Group,GlobalBest);%根据全局最优解求交换序
    pgj_xij=HoldByOdds(pgj_xij,c2);%以概率c2保留交换序
       pfj_xij=GenerateChangeNums(Group,fangxiang_Group);%根据反向求交换序
    pfj_xij=HoldByOdds(pfj_xij,c3);%以概率c3保留交换序
    %以概率w保留上一代交换序
    Velocity=HoldByOdds(Velocity,w);
        Group = PathExchange(Group,pfj_xij);%根据反向粒子位置进行交换
    Group = PathExchange(Group,Velocity); %根据交换序进行路径交换
    Group = PathExchange(Group,pij_xij);%粒子位置变换通过速度、全局性适应度和个体适应度对比来交换来实现,完成自我学习和社会学习
    Group = PathExchange(Group,pgj_xij);
    
    for i = 1:PopSize
        [Group(:,i),flag]=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);
        while flag==1
            p_lin=randperm(num_point)';
            index=find(p_lin==S);
            lin=p_lin(1);
            p_lin(1)=p_lin(index);
            p_lin(index)=lin;
            Group(:,i)=p_lin;
            [Group(:,i),flag]=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);
        end
    end
    for i = 1:PopSize    % 更新各路径总距离
        EachPathDis(i) = PathDistance(Group(:,i)',E,num_shange);
    end
    IsChange = EachPathDis<IndivdualBestFitness;%更新后的距离优于更新前的,记录序号
    IndivdualBest(:, find(IsChange)) = Group(:, find(IsChange));%更新个体最佳路径
    IndivdualBestFitness = IndivdualBestFitness.*( ~IsChange) + EachPathDis.*IsChange;%更新个体最佳路径距离
    [GlobalBestFitness, index] = min(IndivdualBestFitness);%更新全局最佳路径,记录相应的序号
    
    if GlobalBestFitness~=OldBestFitness %比较更新前和更新后的适应度值;
        OldBestFitness=GlobalBestFitness;%不相等时更新适应度值
        best_route=IndivdualBest(:,index)';
    end
    BestFitness(gen) =GlobalBestFitness;%每一代的最优适应度
end
%最优解
index1=find(best_route==E);
route_lin=best_route(1:index1);

%最优解
figure(3)
hold on
for i=1:num_shange
    for j=1:num_shange
        if sign(i,j)==1
            y=[i-1,i-1,i,i];
            x=[j-1,j,j,j-1];
            h=fill(x,y,'k');
            set(h,'facealpha',0.5)
        end
        s=(num2str((i-1)*num_shange+j));
        text(j-0.95,i-0.5,s,'fontsize',6)
    end
end
axis([0 num_shange 0 num_shange])%限制图的边界
plot(S_coo(2),S_coo(1), 'p','markersize', 10,'markerfacecolor','b','MarkerEdgeColor', 'm')%画起点
plot(E_coo(2),E_coo(1),'o','markersize', 10,'markerfacecolor','g','MarkerEdgeColor', 'c')%画终点
set(gca,'YDir','reverse');%图像翻转
for i=1:num_shange
    plot([0 num_shange],[i-1 i-1],'k-');
    plot([i i],[0 num_shange],'k-');%画网格线
end
for i=2:index1
    Q1=[mod(route_lin(i-1)-1,num_shange)+1-0.5,ceil(route_lin(i-1)/num_shange)-0.5];
    Q2=[mod(route_lin(i)-1,num_shange)+1-0.5,ceil(route_lin(i)/num_shange)-0.5];
    plot([Q1(1),Q2(1)],[Q1(2),Q2(2)],'r','LineWidth',3)
end
title('粒子群算法-最优路线');


%进化曲线
figure(4);
plot(BestFitness);
xlabel('迭代次数')
ylabel('适应度值')
grid on;
title('进化曲线');
disp('粒子群算法-最优路线方案:')
disp(num2str(route_lin))
disp(['起点到终点的距离:',num2str(BestFitness(end))]);
figure(5);
plot(BestFitness*100);
xlabel('迭代次数')
ylabel('适应度值')
grid on;
title('最佳个体适应度值变化趋势');
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114.
  • 115.
  • 116.
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.
  • 124.
  • 125.
  • 126.
  • 127.
  • 128.
  • 129.
  • 130.
  • 131.
  • 132.
  • 133.
  • 134.
  • 135.
  • 136.
  • 137.
  • 138.
  • 139.
  • 140.
  • 141.
  • 142.
  • 143.
  • 144.
  • 145.
  • 146.
  • 147.
  • 148.
  • 149.
  • 150.
  • 151.
  • 152.
  • 153.
  • 154.
  • 155.
  • 156.
  • 157.
  • 158.
  • 159.
  • 160.
  • 161.
  • 162.
  • 163.
  • 164.
  • 165.
  • 166.
  • 167.
  • 168.
  • 169.
  • 170.
  • 171.
  • 172.
  • 173.
  • 174.

【路径规划】一种带交叉因子的双向寻优粒子群栅格地图路径规划_路径规划

【路径规划】一种带交叉因子的双向寻优粒子群栅格地图路径规划_路径规划_02