一、Elman神经网络介绍
1.特点
Elman神经网络是一种典型的动态递归神经网络,它是在BP网络基本结构的基础上,在隐含层增加一个承接层,作为一步延时算子,达到记忆的目的,从而使系统具有适应时变特性的能力,增强了网络的全局稳定性,它比前馈型神经网络具有更强的计算能力,还可以用来解决快速寻优问题。2.结构
Elman神经网络是应用较为广泛的一种典型的反馈型神经网络模型。一般分为四层:输入层、隐层、承接层和输出层。其输入层、隐层和输出层的连接类似于前馈网络。输入层的单元仅起到信号传输作用,输出层单元起到加权作用。隐层单元有线性和非线性两类激励函数,通常激励函数取Signmoid非线性函数。而承接层则用来记忆隐层单元前一时刻的输出值,可以认为是一个有一步迟延的延时算子。隐层的输出通过承接层的延迟与存储,自联到隐层的输入,这种自联方式使其对历史数据具有敏感性,内部反馈网络的加入增加了网络本身处理动态信息的能力,从而达到动态建模的目的。其结构图如下图1所示,
其网络的数学表达式为:
其中,y为m维输出节点向量;x为n维中间层节点单元向量;u为r维输入向量;为n维反馈状态向量;
为中间层到输出层连接权值;
为输入层到中间层连接权值;
为承接层到中间层连接权值;g()为输出神经元的传递函数,是中间层输出的线性组合;f()为中间层神经元的传递函数,常采用S函数。3.与BP网络的区别
它是动态反馈型网络,它能够内部反馈、存储和利用过去时刻输出信息,既可以实现静态系统的建模,还能实现动态系统的映射并直接反应系统的动态特性,在计算能力及网络稳定性方面都比BP神经网络更胜一筹。4.缺点
与BP神经网络一样,算法都是采用基于梯度下降法,会出现训练速度慢和容易陷入局部极小点的缺点,对神经网络的训练较难达到全局最优。
二、演示代码
三、仿真结果

代码结果和图: