💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:Matlab仿真科研站博客之家
🏆代码获取方式:
💥扫描文章底部QQ二维码💥
⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。

⛄更多Matlab优化求解仿真内容点击👇
Matlab优化求解(仿真科研站版)
⛄一、两阶段鲁棒优化算法求解微网多电源容量配置优化问题
1 微电网系统建模
图1所示为典型的微电网结构, 由可控分布式电源、可再生分布式电源、储能及本地负荷集成而成。此外, 考虑微电网内包含需求响应负荷的情况, 微电网可通过灵活调整需求响应负荷的用电计划, 降低运行成本。同时, 需求响应负荷也能通过提供该服务获取一定的收益。

图1 微电网结构
在图1所示系统中, 微电网采用集中式控制结构, 由微电网中央控制器负责制定各单元第2日的运行计划, 所需的决策信息主要有:
- 第2日可再生分布式电源出力和常规负荷功率的预测曲线;
- 需求响应负荷的可调度范围、单位调度成本及期望用电计划;
- 配电网日前交易电价及各时段与微电网交换功率的限值;
- 储能单元和可控分布式电源的容量、调度功率限值及单位调度成本;
- 储能单元的荷电状态限值及调度初始时刻的剩余容量。
基于以上信息, 微电网中央控制器需综合考虑运行成本和风险, 得到经济性与可靠性兼顾的调度方案。
1.1 可控分布式电源
微电网中的可控分布式电源主要有微型燃气轮机、燃料电池等, 其发电成本可用线性函数表示。本文中考虑微电网内包含微型燃气轮机的情况, 其成本函数为

式中:CG (t) 表示微型燃气轮机在t时段的发电成本;a、b为成本系数;PG (t) 为t时段微型燃气轮机的输出功率;Δt为调度步长, 取值为1h。由于微型燃气轮机的功率响应速度相对于小时级调度而言较快, 因此不考虑其爬坡率约束, 仅考虑输出功率约束:

式中GPmax和GPmin表示微型燃气轮机的最大/最小输出功率, 分别受其额定功率和最小负载率的限制。
1.2 储能
储能的运行成本主要考虑其一次投资成本和运维成本[15], 在投资回收期内t时段的平均充放电成本CS (t) 可表示为

1.3 需求响应负荷
考虑微电网内包含可平移负荷的情况, 其在提供需求响应服务过程中的用电特性可用以下约束表示:

式中:PDR (t) 为t时段微电网对需求响应负荷的实际调度功率;DDR为需求响应负荷在调度周期内的总用电需求;DDRmax (t) 和DDRmin (t) 为需求响应负荷在t时段的最大/最小用电需求, 与用户对舒适度的要求有关。
在满足上述约束的基础上, 微电网可灵活调整需求响应负荷的用电计划。然而, 用电计划的改变势必影响用户的舒适度, 因此, 微电网需要给予适当的补偿, t时段所需付出的调度成本CDR (t) 可表示为

式中:KDR为需求响应负荷的单位调度成本;P*DR (t) 为t时段需求响应负荷的期望用电功率。式 (10) 中的绝对值项用于表示实际调度功率和期望用电功率之间的偏差, 通过引入辅助变量PDR1 (t) 、PDR2 (t) 及约束 (12) 、 (13) , 可将其化为式 (11) 所示的线性形式[17]:

1.4 配电网交互功率
当微电网内各发电单元无法满足负荷需求时, 需要向配电网购电;反之, 微电网可将富余的电能出售给配电网, 获取收益。微电网和配电网之间的交互功率需满足如下平衡约束:

2 两阶段鲁棒优化模型
微电网的运行目标为日运行成本最小化, 如式 (18) 所示, 所需满足的约束条件包括式 (2) 、式 (4) — (9) 及式 (12) — (16) 。

当不考虑光伏出力和负荷功率的不确定性时, 可得到上述微电网经济调度问题的确定性优化模型, 其紧凑形式可表述为

式中x、y为优化变量, 具体表达式为

上述模型为混合整数线性规划问题, 可采用常规的确定性优化方法进行求解[18], 得到的调度方案的最优性取决于预测的精度。然而, 微电网在实际运行中面临着诸多随机因素的影响, 预测精度难以保证。因此, 确定性优化模型得到的方案往往显得过于“冒险”, 需要在模型中计及不确定性的影响。考虑光伏出力和负荷功率的波动范围位于式 (22) 所构建的箱型不确定集U内:

本文搭建的两阶段鲁棒优化模型的目的在于找到不确定变量u在不确定集U内朝着最恶劣场景变化时经济性最优的调度方案, 具有如下形式:

式中:外层的最小化为第一阶段问题, 优化变量为x;内层的最大最小化为第二阶段问题, 优化变量为u和y, 其中的最小化问题等同于式 (19) 的目标函数, 表示最小化运行成本;x和y的表达式如式 (20) 所示。Ω (x, u) 表示给定一组 (x, u) 时优化变量y的可行域, 具体表达式如下:

式中γ, λ, ν, π表示第二阶段的最小化问题中各约束对应的对偶变量。
对于每一组给定的不确定变量u, 式 (23) 都可以化简为式 (19) 所示的确定性优化模型, 而两阶段鲁棒模型第二阶段优化问题中max结构的目的就在于找到导致运行成本最大的最恶劣场景。
⛄二、部分源代码
clc
clear
close all
warning off
tic
%% 开始运行
%先运行一次,得到UB-LB
[yita,LB,ee_bat_int, p_wt_int,p_pv_int,p_g_int] = MP;
[p_wt,p_pv,p_load,x,UB] = SP(ee_bat_int,p_wt_int,p_pv_int,p_g_int,LB,yita);
UB1 = UB;
p(1)= UB - LB;
pub(1)=0;
plb(1)=0;
%开始迭代
for k=1:10
[yita,LB,ee_bat_int,p_wt_int,p_pv_int,p_g_int] = MP2(p_wt,p_pv,p_load);%MP迭代
[p_wt,p_pv,p_load,x,UB] = SP(ee_bat_int,p_wt_int,p_pv_int,p_g_int,LB,yita);%SP迭代
UB = min(UB1,UB);%取UB较小值
pub(k+1)=UB;
plb(k+1)=LB;
p(k+1) = UB-LB;
end
toc
%%绘图版块:主要绘制了各微网的日运行计划,容量配置结果,迭代过程等等
figure(1)
plot(x(1:24),‘-r*’)
xlim([1 24])
grid
hold on
plot(x(25:48),‘-b*’)
bar(x(49:72))
plot(x(73:96),‘-gd’)
plot(x(97:120),‘-md’)
title(‘典型日1场景下微网运行计划’)
legend(‘购电功率’,'售电功率 ',‘燃气轮机功率’,‘储能充电’,‘储能放电’)
xlabel(‘时间’)
ylabel(‘功率’)
figure(2)
plot(x(121:144),‘-r*’)
xlim([1 24])
grid
hold on
plot(x(145:168),‘-b*’)
bar(x(169:192))
plot(x(193:216),‘-g*’)
plot(x(217:240),‘-m*’)
title(‘典型日2场景下微网运行计划’)
legend(‘购电功率’,'售电功率 ',‘燃气轮机功率’,‘储能充电’,‘储能放电’)
xlabel(‘时间’)
ylabel(‘功率’)
figure(3)
plot(x(241:264),‘-r*’)
xlim([1 24])
grid
hold on
plot(x(265:288),‘-b*’)
bar(x(289:312))
plot(x(313:336),‘-g*’)
plot(x(337:360),‘-m*’)
title(‘典型日3场景下微网运行计划’)
legend(‘购电功率’,'售电功率 ',‘燃气轮机功率’,‘储能充电’,‘储能放电’)
xlabel(‘时间’)
ylabel(‘功率’)
figure(4)
plot(x(361:384),‘-r*’)
xlim([1 24])
grid
hold on
plot(x(385:408),‘-b*’)
bar(x(409:432))
plot(x(433:456),‘-g*’)
plot(x(457:480),‘-m*’)
title(‘典型日4场景下微网运行计划’)
legend(‘购电功率’,'售电功率 ',‘燃气轮机功率’,‘储能充电’,‘储能放电’)
xlabel(‘时间’)
ylabel(‘功率’)
% figure(1)
% bar(R_31);
% set(gca,‘XTickLabel’,{‘A’,‘B’,‘C’});
% for i=1:3
% text(i,R_31(i)+0.03,num2str(R_31(i)),‘VerticalAlignment’,‘bottom’,‘HorizontalAlignment’,‘center’);%就是用test加数值,这个0.03看情况定,根据数值大小,再改就好了
% end
% ylim([0,1.2]);
% ylabel(‘R^2’);
figure(5)
bar([ee_bat_int,p_g_int,p_pv_int,p_wt_int],0.5);
set(gca,‘XTickLabel’,{‘储能容量’,‘燃气轮机容量’,‘光伏容量’,‘风机容量’});
ylim([0,620]);
ylabel(‘配置结果’);
figure(6)
[ss,gg]=meshgrid(1:4,1:24 );
plot3(ss,gg,p_load,‘-’);
xlabel(‘微网编号’);
ylabel(‘时刻’);
zlabel(‘负荷值’);
title(‘负荷调度结果图’);
legend(‘负荷曲线1’,'负荷曲线2 ','负荷曲线3 ','负荷曲线4 ')
figure(7)
[ss,gg]=meshgrid(1:4,1:24 );
plot3(ss,gg,p_pv,‘-’);
xlabel(‘微网编号’);
ylabel(‘时刻’);
zlabel(‘光伏出力’);
title(‘光伏调度结果图’);
legend(‘光伏曲线1’,'光伏曲线2 ','光伏曲线3 ','光伏曲线4 ')
figure(8)
[ss,gg]=meshgrid(1:4,1:24 );
mesh(ss,gg,p_wt);
xlabel(‘微网编号’);
ylabel(‘时刻’);
zlabel(‘风机出力’);
title(‘风机调度结果图’);
legend(‘风机曲线1’,'风机曲线2 ','风机曲线3 ','风机曲线4 ')
figure(9)
plot(pub(1:10),‘-‘)
hold on
plot(plb(1:10),’-’)
xlabel(‘迭代次数’)
ylabel(‘数值’)
legend(‘上界限曲线’,'下界限曲线 ')
title(‘运行曲线’)
figure(10)
plot(p(1:10))
xlabel(‘迭代次数’)
ylabel(‘UB-LB’)
title(‘运行曲线’)
⛄三、运行结果

⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]刘一欣,郭力,王成山.微电网两阶段鲁棒优化经济调度方法[J].中国电机工程学报. 2018,38(14)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
2176

被折叠的 条评论
为什么被折叠?



