POJ 3928 Ping pong 树状数组

本文探讨了一种特殊的乒乓球比赛组织方式及其背后的算法实现。在一条东西走向的街道上居住着不同技能等级的选手,他们之间的比赛需遵循特定的规则:裁判的技能等级必须介于两名参赛者之间,且参赛者和裁判间的距离总和不得超过两者住所的距离。文章通过输入选手的技能等级分布来计算可能的比赛场次。

Description

N(3<=N<=20000) ping pong players live along a west-east street(consider the street as a line segment). Each player has a unique skill rank. To improve their skill rank, they often compete with each other. If two players want to compete, they must choose a referee among other ping pong players and hold the game in the referee's house. For some reason, the contestants can't choose a referee whose skill rank is higher or lower than both of theirs. The contestants have to walk to the referee's house, and because they are lazy, they want to make their total walking distance no more than the distance between their houses. Of course all players live in different houses and the position of their houses are all different. If the referee or any of the two contestants is different, we call two games different. Now is the problem: how many different games can be held in this ping pong street?

Input

The first line of the input contains an integer T(1<=T<=20), indicating the number of test cases, followed by T lines each of which describes a test case.
Every test case consists of N + 1 integers. The first integer is N, the number of players. Then N distinct integers a1, a2 ... aN follow, indicating the skill rank of each player, in the order of west to east. (1 <= ai <= 100000, i = 1 ... N).

Output

For each test case, output a single line contains an integer, the total number of different games.

Sample Input

1 3 1 2 3

Sample Output

1

Score:
#include<cstdio>
#include<string.h>
using namespace std;
typedef long long ll;
#define MAXN 100000
#define M 20006
int ah[MAXN],al[MAXN],lb[MAXN];
int a[M],r[M],l[M];

int sum(int b[MAXN],int k)
{
    int ans=0;
    while(k>0)
    {
        ans+=b[k];
        k-=lb[k];
    }
    return ans;
}

void insert(int b[MAXN],int k)
{
    while(k<=MAXN)
    {
        b[k]++;
        k+=lb[k];
    }
}
int main()
{
    int T;
    scanf("%d",&T);
    for(int i=0;i<=MAXN;i++)
    {
        lb[i]=i&(-i);
    }
    while(T--)
    {
        int n,i;
        scanf("%d",&n);
        for(i=0;i<n;i++)
        {
            scanf("%d",a+i);
        }
        memset(ah,0,sizeof(ah));
        memset(al,0,sizeof(al));
        for(i=0;i<n;i++)
        {
            l[i]=sum(al,a[i]-1);
            insert(al,a[i]);
        }
        for(i=n-1;i>=0;i--)
        {
            r[i]=sum(ah,a[i]-1);
            insert(ah,a[i]);
        }
        ll ans=0;
        for(i=0;i<n;i++)
        {
            ans+=(ll)l[i] * (ll)( n - i - 1 - r[i] ) + (ll)( i - l[i] ) * (ll)r[i];
        }
        printf("%lld\n",ans);
    }
    return 0;
}
内容概要:本文介绍了一个基于Matlab的综合能源系统优化调度仿真资源,重点实现了含光热电站、有机朗肯循环(ORC)和电含光热电站、有机有机朗肯循环、P2G的综合能源优化调度(Matlab代码实现)转气(P2G)技术的冷、热、电多能互补系统的优化调度模型。该模型充分考虑多种能源形式的协同转换与利用,通过Matlab代码构建系统架构、设定约束条件并求解优化目标,旨在提升综合能源系统的运行效率与经济性,同时兼顾灵活性供需不确定性下的储能优化配置问题。文中还提到了相关仿真技术支持,如YALMIP工具包的应用,适用于复杂能源系统的建模与求解。; 适合人群:具备一定Matlab编程基础和能源系统背景知识的科研人员、研究生及工程技术人员,尤其适合从事综合能源系统、可再生能源利用、电力系统优化等方向的研究者。; 使用场景及目标:①研究含光热、ORC和P2G的多能系统协调调度机制;②开展考虑不确定性的储能优化配置与经济调度仿真;③学习Matlab在能源系统优化中的建模与求解方法,复现高水平论文(如EI期刊)中的算法案例。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码和案例文件,按照目录顺序逐步学习,重点关注模型构建逻辑、约束设置与求解器调用方式,并通过修改参数进行仿真实验,加深对综合能源系统优化调度的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值