目录
二分图的定义:
可以把所有的点划分到两个集合中去,使得所有边存在于集合之间,即集合里的点互不相连。
一个图中不含有奇数环,那么就是二分图
主要内容:染色法、匈牙利算法
染色法 O(n+m) 判断一个图是否是二分图
算法思路:
(1)开始对任意一未染色的顶点染色。
(2)判断其(a)相邻的顶点(b)中,若(b)未染色则将其(b)染上和相顶点(a)不同的颜色。
(3)若已经染色且颜色和相邻顶点的颜色相同则说明不是二分图,若颜色不同则继续判断。
(4)bfs和dfs可以搞定!
例题:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100010 * 2;
int e[N], ne[N], idx;//邻接表存储图
int h[N];
int color[N];//保存各个点的颜色,0 未染色,1 是红色,2 是黑色
int n, m;//点和边
void add(int a, int b)//邻接表插入点和边
{
e[idx] = b, ne[idx]= h[a], h[a] = idx++;
}
bool dfs(int u, int c)//深度优先遍历
{
color[u] = c;//u的点成 c 染色
//遍历和 u 相邻的点
for(int i = h[u]; i!= -1; i = ne[i])
{
int b = e[i];
if(!color[b])//相邻的点没有颜色,则递归处理这个相邻点
{
if(!dfs(b, 3 - c)) return false;//(3 - 1 = 2, 如果 u 的颜色是2,则和 u 相邻的染成 1)
//(3 - 2 = 1, 如果 u 的颜色是1,则和 u 相邻的染成 2)
}
else if(color[b] && color[b] != 3 - c)//如果已经染色,判断颜色是否为 3 - c
{
return false;//如果不是,说明冲突,返回
}
}
return true;
}
int main()
{
memset(h, -1, sizeof h);//初始化邻接表
cin >> n >> m;
for(int i = 1; i <= m; i++)//读入边
{
int a, b;
cin >> a >> b;
add(a, b), add(b, a);
}
for(int i = 1; i <= n; i++)//遍历点
{
if(!color[i])//如果没染色
{
if(!dfs(i, 1))//染色该点,并递归处理和它相邻的点
{
cout << "No" << endl;//出现矛盾,输出NO
return 0;
}
}
}
cout << "Yes" << endl;//全部染色完成,没有矛盾,输出YES
return 0;
}
匈牙利算法 O(n*m)
实际运行时间远小于O(n*m)
例题
//match[j]=a,表示女孩j的现有配对男友是a
int match[N];
//st[]数组我称为临时预定数组,st[j]=a表示一轮模拟匹配中,女孩j被男孩a预定了。
int st[N];
//这个函数的作用是用来判断,如果加入x来参与模拟配对,会不会使匹配数增多
int find(int x)
{
//遍历自己喜欢的女孩
for(int i = h[x] ; i != -1 ;i = ne[i])
{
int j = e[i];
if(!st[j])//如果在这一轮模拟匹配中,这个女孩尚未被预定
{
st[j] = true;//那x就预定这个女孩了
//如果女孩j没有男朋友,或者她原来的男朋友能够预定其它喜欢的女孩。配对成功,更新match
if(!match[j]||find(match[j]))
{
match[j] = x;
return true;
}
}
}
//自己中意的全部都被预定了。配对失败。
return false;
}
//记录最大匹配
int res = 0;
for(int i = 1; i <= n1 ;i ++)
{
//因为每次模拟匹配的预定情况都是不一样的所以每轮模拟都要初始化
memset(st,false,sizeof st);
if(find(i))
res++;
}