746. 使用最小花费爬楼梯

本文介绍了LeetCode上的一个经典问题——使用最小花费爬楼梯。通过动态规划的方法,解析了如何计算到达楼梯顶部的最低花费,并给出了两种解决方案:标准动态规划和优化后的动态规划。在动态规划中,定义了dp数组,利用递推公式dp[i]=min(dp[i-1],dp[i-2])+cost[i]进行计算,并初始化dp数组。优化方案中,仅用两个变量dp0和dp1代替了整个dp数组,实现了空间复杂度的优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


题目链接

https://leetcode.cn/problems/min-cost-climbing-stairs/


一、题目描述

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

  • 示例 1:
    输入:cost = [10,15,20]
    输出:15
    解释:你将从下标为 1 的台阶开始。
  • 支付 15 ,向上爬两个台阶,到达楼梯顶部。
    总花费为 15 。
  • 示例 2:
    输入:cost = [1,100,1,1,1,100,1,1,100,1]
    输出:6
    解释:你将从下标为 0 的台阶开始。
  • 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
  • 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
  • 支付 1 ,向上爬一个台阶,到达楼梯顶部。
    总花费为 6 。
  • 提示:
    2 <= cost.length <= 1000
    0 <= cost[i] <= 999

二、思路

1.动态规划

1.确定dp数组以及下标的含义
使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。

dp[i]的定义:到达第i个台阶所花费的最少体力为dp[i]。

2.确定递推公式
可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。

一定是选最小的,所以dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];

注意这里为什么是加cost[i],而不是cost[i-1],cost[i-2]之类的,因为题目中说了:每当你爬上一个阶梯你都要花费对应的体力值

3.dp数组如何初始化
根据dp数组的定义,dp数组初始化其实是比较难的,因为不可能初始化为第i台阶所花费的最少体力。

那么看一下递归公式,dp[i]由dp[i-1],dp[i-2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。

vector<int> dp(cost.size());
dp[0] = cost[0];
dp[1] = cost[1];

4.确定遍历顺序
因为是模拟台阶,而且dp[i]又dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

5.举例推导dp数组

下标i	0		1		2		3		4		5		6		7		8		9
dp[i]	1		100		2		3		3		103		4		5		104		6
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size());
        dp[0] = cost[0];
        dp[1] = cost[1];
        for (int i = 2; i < cost.size(); i++) {
            dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
        }
        // 注意最后一步可以理解为不用花费,所以取倒数第一步,第二步的最少值
        return min(dp[cost.size() - 1], dp[cost.size() - 2]);
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

2.优化

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int dp0 = cost[0];
        int dp1 = cost[1];
        for (int i = 2; i < cost.size(); i++) {
            int dpi = min(dp0, dp1) + cost[i];
            dp0 = dp1; // 记录一下前两位
            dp1 = dpi;
        }
        return min(dp0, dp1);
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值