【MATLAB】CEEMDAN_LSTM神经网络时序预测算法

CEEMDAN-LSTM神经网络时序预测算法:优点、应用与挑战
本文介绍了CEEMDAN-LSTM算法,一种结合CEEMD、AN和LSTM的时序预测方法,强调其高分解准确性和稳定性,但存在计算复杂度高、对异常值敏感等问题。适用于金融市场、气象预报等领域,但需针对具体问题进行优化。

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

CEEMDAN-LSTM神经网络时序预测算法是一种结合了完全扩展经验模态分解(CEEMD)和自适应噪声(AN)以及长短期记忆神经网络(LSTM)的时间序列预测方法。

首先,CEEMDAN算法将原始时间序列分解为一系列固有模式函数(IMF)和一个残差序列。与CEEMD不同的是,CEEMDAN在分解过程中引入了自适应噪声,通过在每个IMF上添加不同的噪声来提高分解的准确性和稳定性。

然后,将利用CEEMDAN分解后的IMFs输入到LSTM中。LSTM是一种深度学习中的流行方法,尤其在处理长时间序列相关问题上具有独特优势。LSTM的内部结构由遗忘门、输入门、输出门和存储单元组成,通过这些门控单元的相互作用,LSTM能够学习到时间序列中的长期依赖关系。

通过结合CEEMDAN和LSTM,该算法能够更好地捕捉时间序列中的复杂模式,提高预测的准确性和稳定性。在实际应用中,CEEMDAN-LSTM算法可以应用于各种领域,如金融市场预测、气象预报、能源消耗预测等。

CEEMDAN-LSTM神经网络时序预测算法具有以下优点:

  1. 「高分解准确性」:通过引入自适应噪声,CEEMDAN能够更准确地提取时间序列中的复杂模式,从而提高预测的准确性。

  2. 「稳定性好」:自适应噪声的引入增加了算法的稳定性,使其在处理不同类型的时间序列数据时都能表现出良好的性能。

  3. 「可扩展性强」:CEEMDAN-LSTM算法可以与其他先进的机器学习算法相结合,进一步提高预测的准确性和稳定性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lwcah(全网各平台账号同名)

您的鼓励是我创作的最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值